Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 17 x^{2} )( 1 + 4 x + 17 x^{2} )$ |
$1 + 4 x + 34 x^{2} + 68 x^{3} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.661206336803$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $32$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $396$ | $99792$ | $23459436$ | $6948716544$ | $2017933426476$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $22$ | $342$ | $4774$ | $83198$ | $1421222$ | $24137622$ | $410354582$ | $6975692926$ | $118587195958$ | $2015997719382$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=4 x^6+16 x^5+4 x^4+9 x^3+2 x^2+12 x+6$
- $y^2=2 x^6+5 x^5+4 x^4+x^3+x^2+12 x+8$
- $y^2=16 x^6+10 x^5+7 x^4+7 x^3+7 x^2+10 x+16$
- $y^2=4 x^6+11 x^5+14 x^3+3 x^2+2 x+4$
- $y^2=x^6+6 x^5+10 x^3+14 x^2+x+16$
- $y^2=8 x^6+11 x^5+x^4+7 x^3+16 x^2+11 x+9$
- $y^2=6 x^6+6 x^4+15 x^3+6 x^2+6$
- $y^2=2 x^6+9 x^5+9 x^3+15 x+13$
- $y^2=2 x^6+11 x^5+2 x^4+13 x^3+2 x^2+11 x+2$
- $y^2=15 x^6+8 x^5+16 x^4+5 x^3+6 x^2+3 x+11$
- $y^2=5 x^6+4 x^5+16 x^4+3 x^3+7 x+1$
- $y^2=12 x^6+12 x^5+13 x^4+7 x^3+5 x^2+9 x+9$
- $y^2=x^6+15 x^5+13 x^4+6 x^3+5 x^2+2 x+8$
- $y^2=14 x^6+15 x^5+9 x^4+12 x^3+13 x^2+13 x+13$
- $y^2=16 x^6+5 x^5+2 x^4+4 x^3+6 x^2+9 x+8$
- $y^2=6 x^6+7 x^5+12 x^4+14 x^3+10 x^2+7 x+3$
- $y^2=11 x^6+14 x^5+7 x^4+11 x^3+7 x^2+14 x+11$
- $y^2=10 x^6+7 x^5+15 x^4+12 x^3+15 x^2+7 x+10$
- $y^2=4 x^6+12 x^5+16 x^4+16 x^3+2 x^2+9 x+11$
- $y^2=3 x^6+7 x^5+3 x^4+13 x^3+11 x^2+11 x+10$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.a $\times$ 1.17.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{17^{2}}$ is 1.289.s $\times$ 1.289.bi. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.17.ae_bi | $2$ | (not in LMFDB) |