Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 23 x^{2} )( 1 + 6 x + 23 x^{2} )$ |
$1 + 6 x + 46 x^{2} + 138 x^{3} + 529 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.715122617226$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $72$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $720$ | $311040$ | $145650960$ | $78282547200$ | $41418839091600$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $586$ | $11970$ | $279742$ | $6435150$ | $148045354$ | $3404942130$ | $78310067518$ | $1801152126270$ | $41426535533386$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=x^6+3 x^5+19 x^4+22 x^3+20 x^2+12 x+15$
- $y^2=22 x^6+22 x^5+15 x^4+7 x^3+19 x^2+18 x$
- $y^2=4 x^6+8 x^5+8 x^4+12 x^3+x^2+3 x+16$
- $y^2=12 x^6+17 x^5+9 x^4+15 x^3+9 x^2+17 x+12$
- $y^2=8 x^6+21 x^5+6 x^4+2 x^3+7 x^2+18 x$
- $y^2=19 x^6+3 x^5+8 x^4+2 x^3+17 x^2+19 x+4$
- $y^2=10 x^6+22 x^5+17 x^4+22 x^3+18 x^2+9 x+8$
- $y^2=17 x^6+20 x^5+3 x^4+21 x^3+21 x^2+21 x+18$
- $y^2=3 x^6+14 x^5+17 x^4+5 x^3+16 x^2+16 x+22$
- $y^2=10 x^6+19 x^5+5 x^4+4 x^3+21 x^2+17 x+20$
- $y^2=22 x^6+18 x^5+12 x^4+10 x^3+18 x^2+4 x+12$
- $y^2=6 x^6+12 x^5+12 x^4+15 x^3+12 x^2+15 x+2$
- $y^2=3 x^6+17 x^5+14 x^4+21 x^3+20 x^2+15 x+16$
- $y^2=16 x^6+8 x^5+10 x^4+10 x^3+7 x^2+4 x+7$
- $y^2=7 x^5+3 x^4+15 x^3+12 x^2+10 x+18$
- $y^2=21 x^6+12 x^5+14 x^4+19 x^3+21 x^2+16 x$
- $y^2=17 x^6+18 x^5+16 x^4+2 x^3+17 x^2+3 x+18$
- $y^2=22 x^6+14 x^5+14 x^4+10 x^3+3 x^2+x+13$
- $y^2=7 x^6+9 x^5+6 x^4+8 x^3+16 x^2+13$
- $y^2=3 x^6+18 x^5+6 x^4+5 x^3+9 x^2+4 x+1$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$The isogeny class factors as 1.23.a $\times$ 1.23.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{23^{2}}$ is 1.529.k $\times$ 1.529.bu. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.ag_bu | $2$ | (not in LMFDB) |