Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 54.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
54.a1 | 54a2 | \([1, -1, 0, -123, -667]\) | \(-1167051/512\) | \(-90699264\) | \([]\) | \(18\) | \(0.23410\) | |
54.a2 | 54a3 | \([1, -1, 0, -3, 3]\) | \(-132651/2\) | \(-54\) | \([3]\) | \(18\) | \(-0.86451\) | |
54.a3 | 54a1 | \([1, -1, 0, 12, 8]\) | \(9261/8\) | \(-157464\) | \([3]\) | \(6\) | \(-0.31520\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 54.a have rank \(0\).
Complex multiplication
The elliptic curves in class 54.a do not have complex multiplication.Modular form 54.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.