Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 19 x^{2} )( 1 + 19 x^{2} )$ |
$1 - 2 x + 38 x^{2} - 38 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.426318466621$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $18$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $360$ | $158400$ | $47786760$ | $16833484800$ | $6123935089800$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $434$ | $6966$ | $129166$ | $2473218$ | $47062082$ | $893931462$ | $16983374686$ | $322686707634$ | $6131067856274$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=14 x^6+3 x^5+x^4+8 x^3+17 x^2+12 x+2$
- $y^2=3 x^6+12 x^5+13 x^4+3 x^3+13 x^2+12 x+3$
- $y^2=10 x^6+2 x^5+9 x^4+3 x^3+11 x^2+18 x+15$
- $y^2=3 x^6+9 x^5+15 x^4+8 x^3+15 x^2+9 x+3$
- $y^2=8 x^6+6 x^5+10 x^4+12 x^3+15 x^2+4 x+8$
- $y^2=8 x^6+9 x^5+7 x^4+5 x^3+7 x^2+9 x+8$
- $y^2=x^6+5 x^5+15 x^4+7 x^3+10 x^2+17 x+1$
- $y^2=7 x^6+7 x^5+3 x^4+14 x^3+3 x^2+7 x+7$
- $y^2=7 x^6+x^5+10 x^3+x+7$
- $y^2=x^5+6 x^4+12 x^3+6 x^2+x$
- $y^2=11 x^6+4 x^5+14 x^4+15 x^3+13 x^2+5 x+7$
- $y^2=11 x^6+x^5+5 x^4+5 x^2+x+11$
- $y^2=9 x^6+13 x^5+16 x^4+3 x^3+16 x^2+13 x+9$
- $y^2=9 x^6+10 x^5+15 x^4+11 x^3+15 x^2+10 x+9$
- $y^2=16 x^6+18 x^5+5 x^4+10 x^3+5 x^2+18 x+16$
- $y^2=13 x^6+5 x^5+10 x^4+13 x^3+10 x^2+5 x+13$
- $y^2=4 x^6+7 x^5+6 x^4+16 x^3+11 x^2+4 x+6$
- $y^2=18 x^6+3 x^5+3 x^3+3 x+18$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.ac $\times$ 1.19.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{19^{2}}$ is 1.361.bi $\times$ 1.361.bm. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.c_bm | $2$ | (not in LMFDB) |