Properties

Label 2.19.ac_bm
Base field $\F_{19}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 19 x^{2} )( 1 + 19 x^{2} )$
  $1 - 2 x + 38 x^{2} - 38 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.426318466621$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $18$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $360$ $158400$ $47786760$ $16833484800$ $6123935089800$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $434$ $6966$ $129166$ $2473218$ $47062082$ $893931462$ $16983374686$ $322686707634$ $6131067856274$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19^{2}}$.

Endomorphism algebra over $\F_{19}$
The isogeny class factors as 1.19.ac $\times$ 1.19.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{19}$
The base change of $A$ to $\F_{19^{2}}$ is 1.361.bi $\times$ 1.361.bm. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.c_bm$2$(not in LMFDB)