Properties

Label 2.59.am_eo
Base field $\F_{59}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 59 x^{2} )( 1 + 59 x^{2} )$
  $1 - 12 x + 118 x^{2} - 708 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.214641822575$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $450$
Cyclic group of points:    no
Non-cyclic primes:   $2, 3$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2880$ $12441600$ $42262274880$ $146822226739200$ $511153979408942400$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $48$ $3574$ $205776$ $12116686$ $714976368$ $42181198342$ $2488651460112$ $146830398090526$ $8662995636763824$ $511116753449261974$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 450 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59^{2}}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.am $\times$ 1.59.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{59}$
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.aba $\times$ 1.3481.eo. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.m_eo$2$(not in LMFDB)