Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 59 x^{2} )( 1 + 59 x^{2} )$ |
| $1 - 12 x + 118 x^{2} - 708 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.214641822575$, $\pm0.5$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $450$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2880$ | $12441600$ | $42262274880$ | $146822226739200$ | $511153979408942400$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $3574$ | $205776$ | $12116686$ | $714976368$ | $42181198342$ | $2488651460112$ | $146830398090526$ | $8662995636763824$ | $511116753449261974$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 450 curves (of which all are hyperelliptic):
- $y^2=44 x^6+2 x^5+16 x^4+34 x^3+8 x^2+38 x+37$
- $y^2=52 x^6+32 x^5+13 x^4+44 x^3+2 x^2+37 x+41$
- $y^2=23 x^6+7 x^5+55 x^4+6 x^3+56 x+24$
- $y^2=53 x^6+51 x^5+13 x^4+46 x^3+x^2+35 x+25$
- $y^2=41 x^6+x^5+47 x^4+37 x^3+19 x^2+33 x+48$
- $y^2=42 x^6+12 x^5+20 x^4+11 x^3+16 x^2+51 x+43$
- $y^2=27 x^6+16 x^5+49 x^4+9 x^3+56 x^2+39 x+5$
- $y^2=16 x^6+41 x^5+4 x^4+16 x^3+19 x^2+52 x+10$
- $y^2=8 x^6+25 x^5+4 x^4+17 x^3+16 x^2+46 x+40$
- $y^2=20 x^6+50 x^5+24 x^4+2 x^3+24 x^2+50 x+20$
- $y^2=32 x^6+48 x^5+37 x^4+50 x^3+25 x^2+3 x+6$
- $y^2=4 x^6+2 x^5+36 x^4+4 x^3+40 x^2+52 x+6$
- $y^2=2 x^6+29 x^5+56 x^4+14 x^3+7 x^2+29 x+28$
- $y^2=44 x^6+18 x^5+9 x^4+14 x^3+58 x^2+48 x+27$
- $y^2=50 x^6+26 x^5+19 x^4+19 x^3+x^2+44 x+30$
- $y^2=57 x^6+3 x^5+26 x^4+37 x^3+9 x^2+47 x$
- $y^2=45 x^6+18 x^5+55 x^3+22 x^2+28 x+27$
- $y^2=14 x^6+34 x^5+14 x^4+29 x^3+41 x^2+18 x+47$
- $y^2=58 x^5+43 x^4+15 x^3+24 x^2+42 x$
- $y^2=x^6+13 x^5+21 x^4+5 x^3+21 x^2+13 x+1$
- and 430 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.am $\times$ 1.59.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.aba $\times$ 1.3481.eo. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.m_eo | $2$ | (not in LMFDB) |