sage:E = EllipticCurve("o1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 6912.o1 has
rank \(1\).
|
Bad L-factors: |
Prime |
L-Factor |
\(2\) | \(1\) |
\(3\) | \(1\) |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
\(5\) |
\( 1 - T + 5 T^{2}\) |
1.5.ab
|
\(7\) |
\( 1 - 3 T + 7 T^{2}\) |
1.7.ad
|
\(11\) |
\( 1 - 3 T + 11 T^{2}\) |
1.11.ad
|
\(13\) |
\( 1 + 4 T + 13 T^{2}\) |
1.13.e
|
\(17\) |
\( 1 + 4 T + 17 T^{2}\) |
1.17.e
|
\(19\) |
\( 1 + 19 T^{2}\) |
1.19.a
|
\(23\) |
\( 1 + 23 T^{2}\) |
1.23.a
|
\(29\) |
\( 1 + 2 T + 29 T^{2}\) |
1.29.c
|
$\cdots$ | $\cdots$ | $\cdots$ |
|
|
See L-function page for more information |
The elliptic curves in class 6912.o do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 6912.o
sage:E.isogeny_class().curves