Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 10 x + 43 x^{2} )( 1 + 12 x + 43 x^{2} )$ |
$1 + 22 x + 206 x^{2} + 946 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.776024765496$, $\pm0.867802827160$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $6$ |
Isomorphism classes: | 24 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3024$ | $3290112$ | $6312723984$ | $11701322809344$ | $21606440776606224$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $1778$ | $79398$ | $3422638$ | $146974146$ | $6321564578$ | $271817817414$ | $11688201577246$ | $502592619617154$ | $21611482254800018$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=9 x^6+19 x^5+40 x^4+5 x^3+13 x^2+8 x+13$
- $y^2=7 x^6+7 x^5+28 x^4+6 x^3+32 x^2+3 x+28$
- $y^2=28 x^6+24 x^5+2 x^4+15 x^3+2 x^2+24 x+28$
- $y^2=11 x^6+8 x^5+41 x^4+36 x^3+41 x^2+8 x+11$
- $y^2=11 x^6+29 x^5+15 x^4+32 x^3+15 x^2+29 x+11$
- $y^2=2 x^6+42 x^5+29 x^4+27 x^3+27 x^2+18 x+8$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.k $\times$ 1.43.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.aw_hy | $2$ | (not in LMFDB) |
2.43.ac_abi | $2$ | (not in LMFDB) |
2.43.c_abi | $2$ | (not in LMFDB) |