Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 6 x + 41 x^{2} )( 1 + 8 x + 41 x^{2} )$ |
$1 + 14 x + 130 x^{2} + 574 x^{3} + 1681 x^{4}$ | |
Frobenius angles: | $\pm0.655213070720$, $\pm0.714776712523$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $20$ |
Isomorphism classes: | 80 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2400$ | $2937600$ | $4681980000$ | $7997040230400$ | $13423699166460000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $1746$ | $67928$ | $2830046$ | $115865176$ | $4749884658$ | $194755393336$ | $7984925750206$ | $327381892525688$ | $13422659555121426$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=39 x^6+11 x^5+30 x^4+24 x^3+24 x^2+30 x+18$
- $y^2=29 x^6+7 x^5+31 x^4+40 x^3+37 x^2+29 x+34$
- $y^2=14 x^6+20 x^5+38 x^4+7 x^2+36 x+15$
- $y^2=36 x^6+24 x^5+5 x^4+7 x^3+39 x^2+35 x+20$
- $y^2=37 x^6+2 x^5+5 x^4+7 x^3+5 x^2+2 x+37$
- $y^2=21 x^6+5 x^5+11 x^4+21 x^3+11 x^2+5 x+21$
- $y^2=35 x^6+34 x^5+23 x^4+31 x^3+9 x^2+29 x+11$
- $y^2=25 x^6+10 x^5+31 x^4+24 x^3+37 x^2+18 x+18$
- $y^2=38 x^6+35 x^5+19 x^3+35 x+38$
- $y^2=33 x^6+39 x^5+15 x^4+34 x^3+15 x^2+39 x+33$
- $y^2=21 x^6+21 x^5+16 x^4+25 x^3+16 x^2+21 x+21$
- $y^2=39 x^6+12 x^5+6 x^4+26 x^3+6 x^2+12 x+39$
- $y^2=30 x^6+22 x^5+12 x^4+10 x^3+12 x^2+22 x+30$
- $y^2=4 x^6+33 x^5+x^4+4 x^3+x^2+33 x+4$
- $y^2=5 x^6+25 x^5+8 x^4+29 x^3+8 x^2+25 x+5$
- $y^2=2 x^6+5 x^5+38 x^4+10 x^3+38 x^2+5 x+2$
- $y^2=36 x^6+35 x^5+9 x^4+39 x^3+8 x^2+15 x+2$
- $y^2=2 x^6+8 x^5+38 x^4+18 x^3+29 x^2+5 x+5$
- $y^2=33 x^6+23 x^5+39 x^4+35 x^3+39 x^2+23 x+33$
- $y^2=21 x^6+7 x^5+12 x^4+16 x^3+17 x^2+28 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The isogeny class factors as 1.41.g $\times$ 1.41.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.