Properties

Label 54.a
Number of curves $3$
Conductor $54$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 54.a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 54.a do not have complex multiplication.

Modular form 54.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 3 q^{5} - q^{7} - q^{8} - 3 q^{10} - 3 q^{11} - 4 q^{13} + q^{14} + q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 54.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
54.a1 54a2 \([1, -1, 0, -123, -667]\) \(-1167051/512\) \(-90699264\) \([]\) \(18\) \(0.23410\)  
54.a2 54a3 \([1, -1, 0, -3, 3]\) \(-132651/2\) \(-54\) \([3]\) \(18\) \(-0.86451\)  
54.a3 54a1 \([1, -1, 0, 12, 8]\) \(9261/8\) \(-157464\) \([3]\) \(6\) \(-0.31520\) \(\Gamma_0(N)\)-optimal