Properties

Label 2-10944-1.1-c1-0-7
Degree $2$
Conductor $10944$
Sign $1$
Analytic cond. $87.3882$
Root an. cond. $9.34816$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 4·13-s − 6·17-s − 19-s + 6·23-s − 5·25-s + 6·29-s + 2·31-s + 4·37-s − 6·41-s + 4·43-s − 6·47-s + 9·49-s + 6·53-s − 12·59-s − 14·61-s − 8·67-s + 14·73-s − 10·79-s − 12·83-s + 6·89-s − 16·91-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.51·7-s + 1.10·13-s − 1.45·17-s − 0.229·19-s + 1.25·23-s − 25-s + 1.11·29-s + 0.359·31-s + 0.657·37-s − 0.937·41-s + 0.609·43-s − 0.875·47-s + 9/7·49-s + 0.824·53-s − 1.56·59-s − 1.79·61-s − 0.977·67-s + 1.63·73-s − 1.12·79-s − 1.31·83-s + 0.635·89-s − 1.67·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10944 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10944\)    =    \(2^{6} \cdot 3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(87.3882\)
Root analytic conductor: \(9.34816\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10944,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.259832705\)
\(L(\frac12)\) \(\approx\) \(1.259832705\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.51762817955516, −15.83144338314339, −15.42417625172976, −15.13462081741881, −13.90094987171804, −13.67202363391693, −13.06005796677550, −12.67843627315619, −11.91741686820867, −11.22181376510869, −10.71886552696123, −10.07011007362676, −9.423649518208472, −8.888943528248260, −8.397356028623453, −7.465595932886789, −6.702949266102787, −6.339719705027767, −5.811344655873985, −4.713277245336622, −4.134255921807142, −3.245347680473402, −2.787946276182461, −1.676293147180452, −0.5143389851485300, 0.5143389851485300, 1.676293147180452, 2.787946276182461, 3.245347680473402, 4.134255921807142, 4.713277245336622, 5.811344655873985, 6.339719705027767, 6.702949266102787, 7.465595932886789, 8.397356028623453, 8.888943528248260, 9.423649518208472, 10.07011007362676, 10.71886552696123, 11.22181376510869, 11.91741686820867, 12.67843627315619, 13.06005796677550, 13.67202363391693, 13.90094987171804, 15.13462081741881, 15.42417625172976, 15.83144338314339, 16.51762817955516

Graph of the $Z$-function along the critical line