Invariants
Base field: | $\F_{7}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 4 x + 7 x^{2}$ |
Frobenius angles: | $\pm0.772814474171$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}) \) |
Galois group: | $C_2$ |
Jacobians: | 2 |
This isogeny class is simple and geometrically simple.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $12$ | $48$ | $324$ | $2496$ | $16572$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $12$ | $48$ | $324$ | $2496$ | $16572$ | $117936$ | $824052$ | $5760768$ | $40366188$ | $282453168$ |
Decomposition and endomorphism algebra
Endomorphism algebra over $\F_{7}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.