Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 14 x + 73 x^{2}$ |
| Frobenius angles: | $\pm0.194368965322$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-6}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $60$ | $5280$ | $389340$ | $28406400$ | $2073162300$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $5280$ | $389340$ | $28406400$ | $2073162300$ | $151334900640$ | $11047401338460$ | $806460082137600$ | $58871586365863740$ | $4297625825622122400$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+22 x+22$
- $y^2=x^3+60 x+60$
- $y^2=x^3+x+5$
- $y^2=x^3+11 x+55$
- $y^2=x^3+50 x+31$
- $y^2=x^3+62 x+62$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-6}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.73.o | $2$ | (not in LMFDB) |