Invariants
Base field: | $\F_{41}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 6 x + 41 x^{2}$ |
Frobenius angles: | $\pm0.655213070720$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}) \) |
Galois group: | $C_2$ |
Jacobians: | $7$ |
Isomorphism classes: | 7 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $48$ | $1728$ | $68400$ | $2827008$ | $115870128$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $1728$ | $68400$ | $2827008$ | $115870128$ | $4749969600$ | $194754510768$ | $7984929328128$ | $327381900087600$ | $13422659347931328$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 7 curves (of which 0 are hyperelliptic):
- $y^2=x^3+3 x+3$
- $y^2=x^3+16 x+16$
- $y^2=x^3+12 x+12$
- $y^2=x^3+38 x+32$
- $y^2=x^3+18 x+13$
- $y^2=x^3+33 x+33$
- $y^2=x^3+10 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.41.ag | $2$ | (not in LMFDB) |