Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 6 x + 47 x^{2}$ |
| Frobenius angles: | $\pm0.644169619151$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-38}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $54$ | $2268$ | $103194$ | $4880736$ | $229368294$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $2268$ | $103194$ | $4880736$ | $229368294$ | $10779026076$ | $506623161546$ | $23811295310208$ | $1119130419281238$ | $52599132152282268$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+21 x+21$
- $y^2=x^3+38 x+2$
- $y^2=x^3+30 x+30$
- $y^2=x^3+40 x+12$
- $y^2=x^3+32 x+32$
- $y^2=x^3+37 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-38}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.47.ag | $2$ | (not in LMFDB) |