Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 6 x + 89 x^{2}$ |
| Frobenius angles: | $\pm0.396989011311$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-5}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $14$ |
| Isomorphism classes: | 14 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $84$ | $8064$ | $706356$ | $62737920$ | $5583910164$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $8064$ | $706356$ | $62737920$ | $5583910164$ | $496980779904$ | $44231345115636$ | $3936588912506880$ | $350356403438724564$ | $31181719918847992704$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which 0 are hyperelliptic):
- $y^2=x^3+70 x+32$
- $y^2=x^3+69 x+29$
- $y^2=x^3+48 x+55$
- $y^2=x^3+68 x+26$
- $y^2=x^3+72 x+72$
- $y^2=x^3+4 x+4$
- $y^2=x^3+44 x+44$
- $y^2=x^3+65 x+17$
- $y^2=x^3+47 x+52$
- $y^2=x^3+28 x+28$
- $y^2=x^3+87 x+87$
- $y^2=x^3+17 x+51$
- $y^2=x^3+8 x+24$
- $y^2=x^3+48 x+48$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-5}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.89.g | $2$ | (not in LMFDB) |