Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 8 x + 67 x^{2}$ |
| Frobenius angles: | $\pm0.662520626193$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-51}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $76$ | $4560$ | $299668$ | $20155200$ | $1350165916$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $4560$ | $299668$ | $20155200$ | $1350165916$ | $90457782480$ | $6060713668708$ | $406067701228800$ | $27206534068670956$ | $1822837805586718800$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+11 x+11$
- $y^2=x^3+49 x+31$
- $y^2=x^3+35 x+3$
- $y^2=x^3+32 x+64$
- $y^2=x^3+8 x+16$
- $y^2=x^3+20 x+20$
- $y^2=x^3+37 x+37$
- $y^2=x^3+51 x+51$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-51}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.67.ai | $2$ | (not in LMFDB) |