Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 10 x + 79 x^{2}$ |
| Frobenius angles: | $\pm0.690177289346$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-6}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $90$ | $6300$ | $491670$ | $38959200$ | $3077073450$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $6300$ | $491670$ | $38959200$ | $3077073450$ | $243086564700$ | $19203916547430$ | $1517108804668800$ | $119851595437655610$ | $9468276088490257500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+23 x+23$
- $y^2=x^3+24 x+72$
- $y^2=x^3+35 x+35$
- $y^2=x^3+7 x+7$
- $y^2=x^3+32 x+17$
- $y^2=x^3+40 x+41$
- $y^2=x^3+31 x+31$
- $y^2=x^3+45 x+45$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-6}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.79.ak | $2$ | (not in LMFDB) |