| L(s) = 1 | − 4·7-s + 3·9-s − 12·17-s + 2·23-s − 25-s − 14·31-s + 8·41-s − 16·47-s − 2·49-s − 12·63-s + 6·71-s + 32·73-s + 4·79-s + 30·89-s − 14·97-s − 32·103-s − 14·113-s + 48·119-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 36·153-s + 157-s + ⋯ |
| L(s) = 1 | − 1.51·7-s + 9-s − 2.91·17-s + 0.417·23-s − 1/5·25-s − 2.51·31-s + 1.24·41-s − 2.33·47-s − 2/7·49-s − 1.51·63-s + 0.712·71-s + 3.74·73-s + 0.450·79-s + 3.17·89-s − 1.42·97-s − 3.15·103-s − 1.31·113-s + 4.40·119-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.91·153-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 61952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 61952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.424260651660627252011971923444, −9.401670233685537405973889044671, −8.911534990908679817989792101965, −8.118360153173760371978857071616, −7.57356519540538183281509096087, −6.80526418655862410599202441776, −6.61017530637467554226176574176, −6.33216658844039512399715167893, −5.26718062023912132586056594917, −4.78987665155787865457700111621, −3.92131200412791242288608029354, −3.63547474808138538276796488470, −2.58128943528283843865888199294, −1.84559544742735453993387759114, 0,
1.84559544742735453993387759114, 2.58128943528283843865888199294, 3.63547474808138538276796488470, 3.92131200412791242288608029354, 4.78987665155787865457700111621, 5.26718062023912132586056594917, 6.33216658844039512399715167893, 6.61017530637467554226176574176, 6.80526418655862410599202441776, 7.57356519540538183281509096087, 8.118360153173760371978857071616, 8.911534990908679817989792101965, 9.401670233685537405973889044671, 9.424260651660627252011971923444