Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 37 x^{2} )( 1 + x + 37 x^{2} )$ |
$1 + 73 x^{2} + 1369 x^{4}$ | |
Frobenius angles: | $\pm0.473805533589$, $\pm0.526194466411$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $14$ |
Isomorphism classes: | 26 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1443$ | $2082249$ | $2565815616$ | $3502778008041$ | $4808584466736843$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $1516$ | $50654$ | $1868980$ | $69343958$ | $2565904822$ | $94931877134$ | $3512473524004$ | $129961739795078$ | $4808584561055836$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=33 x^6+8 x^5+18 x^4+4 x^3+18 x^2+8 x+33$
- $y^2=29 x^6+16 x^5+36 x^4+8 x^3+36 x^2+16 x+29$
- $y^2=18 x^6+31 x^5+20 x^4+20 x^3+20 x^2+31 x+18$
- $y^2=36 x^6+25 x^5+3 x^4+3 x^3+3 x^2+25 x+36$
- $y^2=17 x^6+22 x^5+22 x^4+x^3+32 x^2+23 x+2$
- $y^2=34 x^6+7 x^5+7 x^4+2 x^3+27 x^2+9 x+4$
- $y^2=13 x^6+16 x^5+14 x^4+14 x^3+14 x^2+16 x+13$
- $y^2=26 x^6+32 x^5+28 x^4+28 x^3+28 x^2+32 x+26$
- $y^2=12 x^6+7 x^5+17 x^4+13 x^3+17 x^2+7 x+12$
- $y^2=24 x^6+14 x^5+34 x^4+26 x^3+34 x^2+14 x+24$
- $y^2=25 x^6+10 x^5+25 x^4+29 x^3+25 x^2+10 x+25$
- $y^2=13 x^6+20 x^5+13 x^4+21 x^3+13 x^2+20 x+13$
- $y^2=36 x^6+21 x^5+2 x^4+20 x^3+2 x^2+21 x+36$
- $y^2=35 x^6+5 x^5+4 x^4+3 x^3+4 x^2+5 x+35$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$The isogeny class factors as 1.37.ab $\times$ 1.37.b and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{37^{2}}$ is 1.1369.cv 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.