Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 8 x + 47 x^{2} )^{2}$ |
| $1 + 16 x + 158 x^{2} + 752 x^{3} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.698301488982$, $\pm0.698301488982$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $39$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3136$ | $5017600$ | $10651891264$ | $23845642240000$ | $52599503316705856$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $64$ | $2270$ | $102592$ | $4886718$ | $229346624$ | $10778871710$ | $506625793472$ | $23811281427838$ | $1119130389342784$ | $52599133151904350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 39 curves (of which all are hyperelliptic):
- $y^2=19 x^6+13 x^5+5 x^4+42 x^3+20 x^2+29 x$
- $y^2=10 x^6+23 x^5+12 x^4+11 x^3+12 x^2+23 x+10$
- $y^2=x^6+15 x^5+4 x^4+20 x^3+4 x^2+15 x+1$
- $y^2=17 x^6+17 x^4+17 x^2+17$
- $y^2=46 x^6+41 x^5+12 x^4+28 x^3+12 x^2+41 x+46$
- $y^2=x^6+30 x^5+x^4+5 x^3+3 x^2+35 x+27$
- $y^2=41 x^6+23 x^5+29 x^4+5 x^3+43 x^2+11 x+45$
- $y^2=8 x^6+39 x^5+46 x^4+22 x^3+46 x^2+39 x+8$
- $y^2=16 x^6+17 x^5+27 x^4+2 x^3+24 x^2+32 x+28$
- $y^2=44 x^6+46 x^5+31 x^4+31 x^2+46 x+44$
- $y^2=37 x^6+x^5+29 x^4+10 x^3+44 x^2+17 x+3$
- $y^2=43 x^6+36 x^5+7 x^4+4 x^3+7 x^2+36 x+43$
- $y^2=24 x^6+22 x^5+20 x^4+38 x^3+20 x^2+22 x+24$
- $y^2=39 x^6+13 x^5+22 x^4+37 x^3+22 x^2+13 x+39$
- $y^2=33 x^6+14 x^5+38 x^4+29 x^3+43 x^2+37 x+41$
- $y^2=x^6+35 x^4+35 x^2+1$
- $y^2=32 x^6+43 x^5+39 x^4+39 x^2+43 x+32$
- $y^2=45 x^6+7 x^5+25 x^4+32 x^3+37 x^2+3 x+46$
- $y^2=7 x^6+13 x^5+32 x^4+40 x^3+4 x^2+45 x+8$
- $y^2=x^6+36 x^5+30 x^4+29 x^3+30 x^2+36 x+1$
- and 19 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-31}) \)$)$ |
Base change
This is a primitive isogeny class.