Properties

Label 2.47.q_gc
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $( 1 + 8 x + 47 x^{2} )^{2}$
  $1 + 16 x + 158 x^{2} + 752 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.698301488982$, $\pm0.698301488982$
Angle rank:  $1$ (numerical)
Jacobians:  $39$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3136$ $5017600$ $10651891264$ $23845642240000$ $52599503316705856$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $64$ $2270$ $102592$ $4886718$ $229346624$ $10778871710$ $506625793472$ $23811281427838$ $1119130389342784$ $52599133151904350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 39 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The isogeny class factors as 1.47.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-31}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.aq_gc$2$(not in LMFDB)
2.47.a_be$2$(not in LMFDB)
2.47.ai_r$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.aq_gc$2$(not in LMFDB)
2.47.a_be$2$(not in LMFDB)
2.47.ai_r$3$(not in LMFDB)
2.47.a_abe$4$(not in LMFDB)
2.47.i_r$6$(not in LMFDB)