Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$11025$ |
$91298025$ |
$829884560400$ |
$7837043008055625$ |
$73745500179776000625$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$112$ |
$9700$ |
$909286$ |
$88524868$ |
$8587699792$ |
$832969916350$ |
$80798264223376$ |
$7837433938752388$ |
$760231058208646822$ |
$73742412659209838500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 102 curves (of which all are hyperelliptic):
- $y^2=69 x^6+56 x^5+86 x^4+66 x^3+65 x^2+33 x+2$
- $y^2=69 x^6+94 x^5+52 x^4+77 x^3+37 x^2+92 x+77$
- $y^2=4 x^6+20 x^5+82 x^4+6 x^3+78 x^2+17 x+25$
- $y^2=82 x^6+63 x^5+86 x^4+88 x^3+3 x^2+59 x+38$
- $y^2=23 x^6+38 x^5+88 x^4+3 x^3+85 x^2+46 x+15$
- $y^2=17 x^6+28 x^5+11 x^4+65 x^3+12 x^2+71 x+76$
- $y^2=85 x^6+39 x^5+77 x^4+59 x^3+76 x^2+51 x+85$
- $y^2=x^6+67 x^5+5 x^4+10 x^3+87 x^2+46 x+51$
- $y^2=x^6+3 x^3+27$
- $y^2=89 x^6+43 x^5+60 x^4+10 x^3+57 x^2+73 x+85$
- $y^2=92 x^6+50 x^5+86 x^4+34 x^3+75 x^2+6 x+57$
- $y^2=86 x^6+50 x^5+25 x^4+61 x^3+93 x^2+54 x+13$
- $y^2=79 x^6+59 x^5+68 x^4+8 x^3+70 x^2+34 x+1$
- $y^2=77 x^6+37 x^5+59 x^4+9 x^3+18 x^2+90 x+46$
- $y^2=91 x^6+34 x^5+77 x^4+33 x^3+34 x^2+42 x+32$
- $y^2=83 x^6+15 x^5+82 x^4+85 x^3+26 x^2+58 x+74$
- $y^2=x^6+37 x^5+22 x^4+38 x^3+36 x^2+70 x+65$
- $y^2=38 x^6+51 x^5+19 x^4+93 x^3+67 x^2+46 x+60$
- $y^2=44 x^6+80 x^5+67 x^4+14 x^3+15 x^2+20 x+43$
- $y^2=11 x^6+37 x^5+11 x^4+88 x^3+64 x^2+42 x+91$
- and 82 more
- $y^2=9 x^6+72 x^5+88 x^4+93 x^3+25 x^2+49 x+49$
- $y^2=89 x^6+92 x^5+95 x^4+66 x^3+22 x^2+74 x+75$
- $y^2=69 x^6+80 x^5+92 x^4+14 x^3+74 x^2+5 x+55$
- $y^2=96 x^6+38 x^5+32 x^4+53 x^3+94 x^2+45 x+22$
- $y^2=56 x^6+x^5+84 x^4+63 x^3+29 x^2+75 x+92$
- $y^2=56 x^6+17 x^5+15 x^4+85 x^3+60 x^2+78 x+92$
- $y^2=62 x^6+33 x^5+32 x^4+11 x^3+62 x^2+75 x+25$
- $y^2=56 x^6+38 x^5+5 x^4+59 x^3+x^2+7 x+78$
- $y^2=4 x^6+25 x^5+26 x^4+23 x^3+48 x^2+32 x+43$
- $y^2=2 x^6+91 x^5+62 x^4+29 x^3+54 x^2+15 x+6$
- $y^2=37 x^6+90 x^5+68 x^4+94 x^3+10 x^2+34 x+29$
- $y^2=55 x^6+16 x^5+10 x^4+38 x^3+89 x^2+35 x+94$
- $y^2=60 x^6+15 x^5+61 x^4+84 x^3+50 x^2+87 x+62$
- $y^2=79 x^6+8 x^5+75 x^4+25 x^3+61 x^2+11 x+8$
- $y^2=52 x^6+80 x^5+65 x^4+65 x^3+50 x^2+68 x+34$
- $y^2=90 x^6+38 x^5+56 x^4+84 x^3+56 x^2+38 x+90$
- $y^2=48 x^6+65 x^5+87 x^4+54 x^3+58 x^2+72 x+25$
- $y^2=48 x^6+61 x^5+60 x^4+14 x^3+76 x^2+39 x+46$
- $y^2=90 x^6+44 x^5+9 x^4+40 x^3+40 x^2+3 x+27$
- $y^2=81 x^6+57 x^5+87 x^4+94 x^3+92 x^2+77 x+32$
- $y^2=95 x^6+65 x^5+30 x^4+84 x^3+10 x^2+10 x+64$
- $y^2=33 x^6+42 x^5+16 x^4+6 x^3+33 x^2+90 x+22$
- $y^2=44 x^6+12 x^5+49 x^4+82 x^3+62 x^2+18 x+36$
- $y^2=39 x^6+89 x^5+43 x^4+34 x^3+24 x^2+8 x+82$
- $y^2=6 x^6+69 x^5+57 x^4+74 x^3+4 x^2+38 x+7$
- $y^2=x^6+61 x^3+1$
- $y^2=x^6+95 x^3+89$
- $y^2=25 x^6+21 x^5+x^4+54 x^3+17 x^2+59 x+1$
- $y^2=31 x^6+46 x^5+77 x^4+5 x^3+90 x^2+10 x+73$
- $y^2=6 x^6+66 x^5+42 x^4+50 x^3+25 x^2+8 x+50$
- $y^2=86 x^6+61 x^5+85 x^4+56 x^3+66 x^2+75 x+72$
- $y^2=25 x^6+7 x^5+15 x^4+62 x^3+82 x^2+7 x+72$
- $y^2=20 x^6+41 x^5+33 x^4+65 x^3+33 x^2+41 x+20$
- $y^2=96 x^6+55 x^5+12 x^4+50 x^3+64 x^2+34 x+89$
- $y^2=91 x^6+27 x^5+14 x^4+41 x^3+30 x^2+32 x+41$
- $y^2=95 x^6+29 x^5+77 x^4+13 x^3+78 x^2+56 x+94$
- $y^2=18 x^6+44 x^5+51 x^3+87 x^2+92 x+17$
- $y^2=48 x^6+83 x^5+83 x^4+23 x^3+68 x^2+86 x+69$
- $y^2=35 x^6+18 x^5+44 x^4+68 x^3+31 x^2+89 x+88$
- $y^2=35 x^6+49 x^5+58 x^4+4 x^3+86 x^2+51 x+87$
- $y^2=58 x^6+46 x^5+2 x^4+56 x^3+89 x^2+10 x+65$
- $y^2=59 x^6+92 x^5+87 x^4+12 x^3+83 x^2+79 x+36$
- $y^2=14 x^6+38 x^5+79 x^4+63 x^3+33 x^2+76 x+47$
- $y^2=72 x^6+86 x^5+72 x^4+17 x^3+86 x^2+48 x+48$
- $y^2=93 x^6+57 x^5+82 x^4+20 x^3+80 x^2+66 x+38$
- $y^2=52 x^6+49 x^5+2 x^4+77 x^3+87 x^2+15 x+3$
- $y^2=85 x^6+9 x^5+11 x^4+75 x^3+46 x^2+62 x+42$
- $y^2=80 x^6+66 x^5+30 x^4+66 x^3+40 x^2+85 x+10$
- $y^2=11 x^6+83 x^5+12 x^4+73 x^3+31 x^2+13 x+25$
- $y^2=28 x^6+94 x^5+78 x^4+84 x^3+30 x^2+3 x+34$
- $y^2=25 x^6+35 x^4+4 x^3+27 x^2+91$
- $y^2=79 x^6+76 x^5+42 x^4+44 x^3+80 x^2+67 x+50$
- $y^2=3 x^6+7 x^5+73 x^4+63 x^3+76 x^2+85 x+45$
- $y^2=32 x^6+92 x^5+47 x^4+73 x^3+67 x^2+88 x+7$
- $y^2=75 x^6+62 x^5+8 x^4+12 x^3+74 x^2+55 x+58$
- $y^2=26 x^6+29 x^5+60 x^4+78 x^3+25 x^2+86 x+85$
- $y^2=33 x^6+36 x^5+40 x^4+67 x^3+83 x^2+31 x+23$
- $y^2=54 x^6+28 x^5+60 x^4+76 x^3+76 x^2+5 x+7$
- $y^2=6 x^6+8 x^5+37 x^4+38 x^3+42 x^2+66 x+9$
- $y^2=8 x^6+78 x^5+45 x^4+21 x^3+82 x^2+22 x+27$
- $y^2=84 x^6+87 x^5+60 x^4+70 x^3+34 x^2+69 x+13$
- $y^2=40 x^6+71 x^5+93 x^4+63 x^3+96 x^2+61 x+53$
- $y^2=34 x^6+48 x^5+39 x^4+17 x^3+44 x^2+50 x+96$
- $y^2=61 x^6+26 x^5+70 x^4+67 x^3+61 x^2+57 x+44$
- $y^2=15 x^6+65 x^5+40 x^4+71 x^3+17 x^2+28 x+77$
- $y^2=28 x^6+41 x^5+68 x^4+69 x^3+84 x^2+18 x+15$
- $y^2=4 x^6+66 x^5+74 x^4+58 x^3+68 x^2+49 x+4$
- $y^2=61 x^6+51 x^5+83 x^3+75 x^2+46 x+39$
- $y^2=15 x^6+7 x^5+51 x^4+34 x^3+81 x^2+27 x+43$
- $y^2=39 x^6+56 x^5+63 x^4+37 x^3+75 x^2+87 x+32$
- $y^2=37 x^6+59 x^5+54 x^4+28 x^3+9 x^2+69 x+59$
- $y^2=62 x^6+72 x^5+3 x^4+32 x^3+21 x^2+82 x+21$
- $y^2=62 x^6+67 x^5+52 x^4+4 x^3+39 x^2+68 x+11$
- $y^2=37 x^6+9 x^5+86 x^3+52 x^2+6 x+18$
- $y^2=95 x^6+6 x^5+76 x^4+9 x^3+82 x^2+41 x+50$
- $y^2=49 x^6+38 x^5+24 x^4+11 x^3+31 x^2+57 x+4$
- $y^2=68 x^6+79 x^5+24 x^4+42 x^3+47 x^2+31 x+41$
- $y^2=12 x^6+27 x^5+93 x^4+10 x^3+32 x^2+79 x+64$
- $y^2=33 x^6+90 x^5+11 x^4+4 x^3+56 x^2+3 x+10$
- $y^2=4 x^6+x^5+21 x^4+65 x^3+81 x^2+94 x+11$
- $y^2=78 x^6+89 x^5+73 x^4+77 x^3+79 x^2+92 x+52$
- $y^2=12 x^6+14 x^5+3 x^4+34 x^3+43 x^2+74 x+50$
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$
Base change
This is a primitive isogeny class.
Twists