Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 7 x + 31 x^{2} )^{2}$ |
$1 + 14 x + 111 x^{2} + 434 x^{3} + 961 x^{4}$ | |
Frobenius angles: | $\pm0.716379308692$, $\pm0.716379308692$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $8$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1521$ | $950625$ | $869306256$ | $856133825625$ | $819472437292041$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $988$ | $29176$ | $927028$ | $28623706$ | $887433118$ | $27513276886$ | $852888585508$ | $26439618778216$ | $819628386667948$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=7 x^6+30 x^5+24 x^4+10 x^3+24 x^2+30 x+7$
- $y^2=x^6+4 x^5+8 x^4+x^3+8 x^2+4 x+1$
- $y^2=10 x^6+21 x^5+x^4+4 x^3+x^2+21 x+10$
- $y^2=x^6+19 x^3+8$
- $y^2=12 x^6+29 x^5+19 x^4+28 x^3+19 x^2+29 x+12$
- $y^2=14 x^6+30 x^4+18 x^3+30 x^2+14$
- $y^2=9 x^6+6 x^5+28 x^4+8 x^3+28 x^2+6 x+9$
- $y^2=27 x^6+17 x^5+25 x^4+4 x^3+20 x^2+8$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The isogeny class factors as 1.31.h 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.