Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 43 x^{2} )( 1 + 6 x + 43 x^{2} )$ |
$1 + 50 x^{2} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.348746511119$, $\pm0.651253488881$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $256$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1900$ | $3610000$ | $6321210700$ | $11696400000000$ | $21611482324859500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $1950$ | $79508$ | $3421198$ | $147008444$ | $6321058350$ | $271818611108$ | $11688211082398$ | $502592611936844$ | $21611482336434750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 256 curves (of which all are hyperelliptic):
- $y^2=10 x^6+30 x^5+35 x^4+15 x^3+37 x^2+33 x+19$
- $y^2=27 x^6+18 x^5+9 x^4+37 x^3+13 x^2+28 x+32$
- $y^2=38 x^6+11 x^5+27 x^4+25 x^3+39 x^2+41 x+10$
- $y^2=6 x^6+38 x^5+14 x^4+23 x^3+27 x^2+26 x+23$
- $y^2=18 x^6+28 x^5+42 x^4+26 x^3+38 x^2+35 x+26$
- $y^2=20 x^6+15 x^5+3 x^4+14 x^3+3 x^2+15 x+20$
- $y^2=17 x^6+2 x^5+9 x^4+42 x^3+9 x^2+2 x+17$
- $y^2=30 x^6+14 x^5+14 x^4+33 x^3+31 x^2+29 x+13$
- $y^2=4 x^6+42 x^5+42 x^4+13 x^3+7 x^2+x+39$
- $y^2=13 x^6+37 x^5+40 x^4+20 x^3+20 x^2+20 x+7$
- $y^2=5 x^6+29 x^5+42 x^4+29 x^3+23 x^2+33 x+10$
- $y^2=14 x^6+7 x^5+19 x^4+32 x^3+37 x^2+3 x+29$
- $y^2=42 x^6+21 x^5+14 x^4+10 x^3+25 x^2+9 x+1$
- $y^2=38 x^6+3 x^5+x^4+18 x^3+8 x^2+31 x$
- $y^2=28 x^6+9 x^5+3 x^4+11 x^3+24 x^2+7 x$
- $y^2=14 x^6+40 x^5+12 x^4+11 x^3+33 x^2+6 x+38$
- $y^2=42 x^6+34 x^5+36 x^4+33 x^3+13 x^2+18 x+28$
- $y^2=12 x^6+x^5+41 x^4+40 x^3+21 x^2+40 x+26$
- $y^2=36 x^6+3 x^5+37 x^4+34 x^3+20 x^2+34 x+35$
- $y^2=13 x^6+33 x^5+29 x^4+36 x^3+21 x^2+20 x+35$
- and 236 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ag $\times$ 1.43.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.by 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-34}) \)$)$ |
Base change
This is a primitive isogeny class.