Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 29 x^{2} )( 1 + 8 x + 29 x^{2} )$ |
| $1 - 6 x^{2} + 841 x^{4}$ | |
| Frobenius angles: | $\pm0.233506187634$, $\pm0.766493812366$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $48$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $836$ | $698896$ | $594838244$ | $502578909184$ | $420707212982276$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $830$ | $24390$ | $710574$ | $20511150$ | $594853166$ | $17249876310$ | $500243823454$ | $14507145975870$ | $420707192664350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=18 x^6+14 x^5+15 x^4+5 x^3+7 x^2+18 x+5$
- $y^2=12 x^6+25 x^5+20 x^4+26 x^3+x^2+x+22$
- $y^2=20 x^6+14 x^5+14 x^4+27 x^3+4 x^2+26 x+26$
- $y^2=21 x^6+13 x^5+21 x^4+16 x^3+19 x^2+25 x+3$
- $y^2=2 x^6+19 x^5+28 x^4+15 x^3+6 x^2+13 x+24$
- $y^2=4 x^6+9 x^5+27 x^4+x^3+12 x^2+26 x+19$
- $y^2=9 x^6+3 x^5+6 x^4+19 x^3+11 x^2+27 x+18$
- $y^2=13 x^6+7 x^5+15 x^4+7 x^3+22 x^2+9 x+27$
- $y^2=25 x^6+27 x^4+25 x^2+26$
- $y^2=6 x^6+14 x^4+28 x^2+19$
- $y^2=22 x^6+x^5+3 x^4+9 x^3+23 x^2+17 x+17$
- $y^2=26 x^6+15 x^5+17 x^4+11 x^3+25 x^2+21 x+16$
- $y^2=10 x^6+5 x^5+20 x^4+4 x^3+24 x^2+13 x+8$
- $y^2=20 x^6+10 x^5+11 x^4+8 x^3+19 x^2+26 x+16$
- $y^2=9 x^6+24 x^5+13 x^4+21 x^3+14 x^2+22 x+10$
- $y^2=12 x^6+26 x^5+10 x^4+26 x^3+12 x^2+10$
- $y^2=24 x^6+23 x^5+20 x^4+23 x^3+24 x^2+20$
- $y^2=20 x^6+27 x^5+20 x^4+14 x^3+24 x^2+5 x+14$
- $y^2=11 x^6+25 x^5+11 x^4+28 x^3+19 x^2+10 x+28$
- $y^2=17 x^6+26 x^5+24 x^4+11 x^3+28 x^2+8 x+18$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$| The isogeny class factors as 1.29.ai $\times$ 1.29.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{29^{2}}$ is 1.841.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
Base change
This is a primitive isogeny class.