| L(s) = 1 | + 3·4-s + 2·5-s + 8·11-s + 5·16-s − 2·19-s + 6·20-s − 25-s − 12·29-s − 8·31-s + 20·41-s + 24·44-s + 10·49-s + 16·55-s + 4·61-s + 3·64-s − 8·71-s − 6·76-s − 8·79-s + 10·80-s − 4·89-s − 4·95-s − 3·100-s + 12·101-s − 12·109-s − 36·116-s + 26·121-s − 24·124-s + ⋯ |
| L(s) = 1 | + 3/2·4-s + 0.894·5-s + 2.41·11-s + 5/4·16-s − 0.458·19-s + 1.34·20-s − 1/5·25-s − 2.22·29-s − 1.43·31-s + 3.12·41-s + 3.61·44-s + 10/7·49-s + 2.15·55-s + 0.512·61-s + 3/8·64-s − 0.949·71-s − 0.688·76-s − 0.900·79-s + 1.11·80-s − 0.423·89-s − 0.410·95-s − 0.299·100-s + 1.19·101-s − 1.14·109-s − 3.34·116-s + 2.36·121-s − 2.15·124-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.280194459\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.280194459\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58708562452459998415874618689, −9.895725449970585367293151930639, −9.378141900917385247922674040582, −9.272490544274385803527697612288, −8.956817079276231557468572180551, −8.300398733983534919188685853658, −7.53486084582928610991960209872, −7.32920404736049357396229373510, −7.01032123073199462453871565352, −6.39914183394441507505221523728, −6.13934856384532493371442001671, −5.63858215501018800429036408746, −5.53515279053185991094048963791, −4.20488842804589520322511362464, −4.16123666520399111066634718381, −3.51404870583363007594206669721, −2.79360950708595798475222006793, −1.96629034009164122585877834940, −1.90450570379301442420146239718, −1.07559288457100877122833086134,
1.07559288457100877122833086134, 1.90450570379301442420146239718, 1.96629034009164122585877834940, 2.79360950708595798475222006793, 3.51404870583363007594206669721, 4.16123666520399111066634718381, 4.20488842804589520322511362464, 5.53515279053185991094048963791, 5.63858215501018800429036408746, 6.13934856384532493371442001671, 6.39914183394441507505221523728, 7.01032123073199462453871565352, 7.32920404736049357396229373510, 7.53486084582928610991960209872, 8.300398733983534919188685853658, 8.956817079276231557468572180551, 9.272490544274385803527697612288, 9.378141900917385247922674040582, 9.895725449970585367293151930639, 10.58708562452459998415874618689