Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 6 x^{2} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.240986412023$, $\pm0.759013587977$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{7})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $174$ |
| Isomorphism classes: | 216 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2804$ | $7862416$ | $22164411476$ | $62347826692096$ | $174887470131824564$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $2798$ | $148878$ | $7901646$ | $418195494$ | $22164461822$ | $1174711139838$ | $62259659655838$ | $3299763591802134$ | $174887469898136078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 174 curves (of which all are hyperelliptic):
- $y^2=8 x^6+6 x^5+52 x^4+33 x^3+40 x^2+48 x+12$
- $y^2=16 x^6+12 x^5+51 x^4+13 x^3+27 x^2+43 x+24$
- $y^2=6 x^6+23 x^5+42 x^4+28 x^3+30 x^2+2 x+30$
- $y^2=23 x^6+52 x^5+43 x^4+28 x^3+36 x^2+34 x+21$
- $y^2=45 x^6+25 x^5+43 x^4+15 x^3+2 x^2+26 x+9$
- $y^2=37 x^6+50 x^5+33 x^4+30 x^3+4 x^2+52 x+18$
- $y^2=14 x^6+26 x^5+45 x^4+34 x^3+34 x^2+35 x+30$
- $y^2=22 x^6+9 x^5+24 x^4+18 x^3+32 x^2+12 x+11$
- $y^2=44 x^6+18 x^5+48 x^4+36 x^3+11 x^2+24 x+22$
- $y^2=3 x^6+35 x^5+20 x^4+45 x^3+42 x^2+38 x$
- $y^2=52 x^6+45 x^5+47 x^4+47 x^3+50 x^2+39 x+21$
- $y^2=51 x^6+37 x^5+41 x^4+41 x^3+47 x^2+25 x+42$
- $y^2=4 x^6+17 x^5+25 x^4+18 x^3+34 x^2+x+30$
- $y^2=8 x^6+45 x^5+20 x^4+31 x^3+17 x^2+25 x+48$
- $y^2=16 x^6+37 x^5+40 x^4+9 x^3+34 x^2+50 x+43$
- $y^2=37 x^6+40 x^5+8 x^4+44 x^3+15 x^2+28 x+32$
- $y^2=9 x^6+52 x^5+10 x^4+26 x^3+17 x^2+11 x$
- $y^2=48 x^6+34 x^5+14 x^4+48 x^3+7 x^2+35 x+6$
- $y^2=32 x^6+31 x^5+14 x^4+35 x^3+51 x^2+x+31$
- $y^2=11 x^6+9 x^5+28 x^4+17 x^3+49 x^2+2 x+9$
- and 154 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{7})\). |
| The base change of $A$ to $\F_{53^{2}}$ is 1.2809.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.