Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 158 x^{2} + 9409 x^{4}$ |
| Frobenius angles: | $\pm0.0985240674475$, $\pm0.901475932553$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{22})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $209$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9252$ | $85599504$ | $832972520484$ | $7836345607274496$ | $73742412706649047332$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $98$ | $9094$ | $912674$ | $88516990$ | $8587340258$ | $832973036038$ | $80798284478114$ | $7837433872947454$ | $760231058654565218$ | $73742412723805268614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 209 curves (of which all are hyperelliptic):
- $y^2=31 x^6+64 x^5+77 x^4+84 x^3+2 x^2+86 x+41$
- $y^2=16 x^6+60 x^5+71 x^4+52 x^3+41 x^2+43 x+80$
- $y^2=80 x^6+9 x^5+64 x^4+66 x^3+11 x^2+21 x+12$
- $y^2=71 x^6+62 x^5+77 x^4+13 x^3+30 x^2+67 x+12$
- $y^2=61 x^6+84 x^5+35 x^4+55 x^3+41 x^2+87 x+7$
- $y^2=60 x^6+32 x^5+60 x^4+11 x^3+37 x^2+37 x+28$
- $y^2=9 x^6+63 x^5+9 x^4+55 x^3+88 x^2+88 x+43$
- $y^2=92 x^6+58 x^5+6 x^4+75 x^3+13 x^2+19 x+43$
- $y^2=89 x^6+36 x^5+6 x^4+35 x^3+2 x^2+26 x+63$
- $y^2=57 x^6+83 x^5+30 x^4+78 x^3+10 x^2+33 x+24$
- $y^2=90 x^6+94 x^5+53 x^4+25 x^3+59 x^2+2 x+56$
- $y^2=62 x^6+82 x^5+71 x^4+28 x^3+4 x^2+10 x+86$
- $y^2=50 x^6+43 x^5+18 x^4+73 x^3+75 x^2+67 x+53$
- $y^2=52 x^6+18 x^5+60 x^4+78 x^3+68 x^2+13 x+8$
- $y^2=85 x^6+96 x^5+88 x^4+29 x^3+95 x^2+17 x+68$
- $y^2=37 x^6+92 x^5+52 x^4+48 x^3+87 x^2+85 x+49$
- $y^2=96 x^6+52 x^5+89 x^4+35 x^3+89 x^2+58 x+67$
- $y^2=92 x^6+66 x^5+57 x^4+78 x^3+57 x^2+96 x+44$
- $y^2=64 x^6+79 x^5+76 x^4+68 x^3+32 x^2+49 x+40$
- $y^2=29 x^6+7 x^5+89 x^4+49 x^3+63 x^2+51 x+6$
- and 189 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{22})\). |
| The base change of $A$ to $\F_{97^{2}}$ is 1.9409.agc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$ |
Base change
This is a primitive isogeny class.