Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 26 x^{2} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.307138866923$, $\pm0.692861133077$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\zeta_{12})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $155$ |
| Isomorphism classes: | 212 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1396$ | $1948816$ | $2565637204$ | $3520216498176$ | $4808584507632436$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1422$ | $50654$ | $1878286$ | $69343958$ | $2565547998$ | $94931877134$ | $3512478446878$ | $129961739795078$ | $4808584642847022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 155 curves (of which all are hyperelliptic):
- $y^2=20 x^6+7 x^5+36 x^4+20 x^2+29 x+7$
- $y^2=3 x^6+14 x^5+35 x^4+3 x^2+21 x+14$
- $y^2=x^6+16 x^5+25 x^4+19 x^3+9 x^2+3 x+19$
- $y^2=x^6+20 x^5+2 x^4+24 x^3+22 x^2+24 x+24$
- $y^2=2 x^6+3 x^5+4 x^4+11 x^3+7 x^2+11 x+11$
- $y^2=3 x^6+16 x^5+20 x^4+11 x^3+6 x^2+24 x+18$
- $y^2=26 x^6+28 x^5+16 x^4+4 x^3+8 x^2+7 x+31$
- $y^2=5 x^6+31 x^5+34 x^4+15 x^3+23 x^2+9 x+33$
- $y^2=10 x^6+25 x^5+31 x^4+30 x^3+9 x^2+18 x+29$
- $y^2=6 x^6+7 x^5+21 x^4+5 x^3+28 x^2+20 x+35$
- $y^2=20 x^6+23 x^5+11 x^4+x^3+9 x+30$
- $y^2=3 x^6+9 x^5+22 x^4+2 x^3+18 x+23$
- $y^2=13 x^6+31 x^5+x^4+33 x^3+25 x^2+36 x+6$
- $y^2=26 x^6+25 x^5+2 x^4+29 x^3+13 x^2+35 x+12$
- $y^2=8 x^6+25 x^5+23 x^4+13 x^3+19 x^2+35 x+28$
- $y^2=16 x^6+13 x^5+9 x^4+26 x^3+x^2+33 x+19$
- $y^2=8 x^6+10 x^5+34 x^4+7 x^3+23 x^2+4 x+10$
- $y^2=23 x^6+29 x^5+28 x^4+8 x^3+10 x^2+31 x+24$
- $y^2=9 x^6+21 x^5+19 x^4+16 x^3+20 x^2+25 x+11$
- $y^2=32 x^6+2 x^5+29 x^4+25 x^3+30 x^2+7 x+20$
- and 135 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.ba 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.