Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 158 x^{2} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.450388100912$, $\pm0.549611899088$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\zeta_{8})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $210$ |
| Isomorphism classes: | 225 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7048$ | $49674304$ | $326941052296$ | $2251230714602496$ | $15516041187301904968$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $7206$ | $571788$ | $47435950$ | $3939040644$ | $326941731222$ | $27136050989628$ | $2252292171719134$ | $186940255267540404$ | $15516041187397956486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=71 x^6+62 x^5+2 x^4+45 x^3+13 x^2+55 x+39$
- $y^2=59 x^6+41 x^5+4 x^4+7 x^3+26 x^2+27 x+78$
- $y^2=68 x^6+11 x^5+69 x^4+4 x^3+44 x^2+11 x+71$
- $y^2=53 x^6+22 x^5+55 x^4+8 x^3+5 x^2+22 x+59$
- $y^2=51 x^6+20 x^5+80 x^4+15 x^3+18 x^2+20 x+76$
- $y^2=19 x^6+40 x^5+77 x^4+30 x^3+36 x^2+40 x+69$
- $y^2=9 x^6+22 x^5+50 x^4+82 x^3+27 x^2+x+30$
- $y^2=46 x^6+64 x^5+19 x^4+59 x^3+45 x^2+34 x+3$
- $y^2=9 x^6+45 x^5+38 x^4+35 x^3+7 x^2+68 x+6$
- $y^2=23 x^6+37 x^5+54 x^4+11 x^3+59 x^2+2 x+20$
- $y^2=46 x^6+74 x^5+25 x^4+22 x^3+35 x^2+4 x+40$
- $y^2=38 x^6+30 x^5+50 x^4+48 x^3+30 x^2+32 x+75$
- $y^2=76 x^6+60 x^5+17 x^4+13 x^3+60 x^2+64 x+67$
- $y^2=68 x^6+45 x^5+79 x^4+9 x^3+51 x^2+30 x+71$
- $y^2=53 x^6+7 x^5+75 x^4+18 x^3+19 x^2+60 x+59$
- $y^2=44 x^6+53 x^5+39 x^4+65 x^3+10 x^2+13 x+3$
- $y^2=6 x^6+6 x^5+31 x^4+63 x^3+71 x^2+13 x+52$
- $y^2=12 x^6+12 x^5+62 x^4+43 x^3+59 x^2+26 x+21$
- $y^2=77 x^6+24 x^5+34 x^4+47 x^3+11 x^2+13 x$
- $y^2=71 x^6+48 x^5+68 x^4+11 x^3+22 x^2+26 x$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{8})\). |
| The base change of $A$ to $\F_{83^{2}}$ is 1.6889.gc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.