Properties

Label 855.2.c.b
Level $855$
Weight $2$
Character orbit 855.c
Analytic conductor $6.827$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(514,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.514"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + q^{4} + (2 i + 1) q^{5} + 2 i q^{7} + 3 i q^{8} + (i - 2) q^{10} + 4 q^{11} + 2 i q^{13} - 2 q^{14} - q^{16} - 4 i q^{17} - q^{19} + (2 i + 1) q^{20} + 4 i q^{22} - 6 i q^{23} + (4 i - 3) q^{25} + \cdots + 3 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 2 q^{5} - 4 q^{10} + 8 q^{11} - 4 q^{14} - 2 q^{16} - 2 q^{19} + 2 q^{20} - 6 q^{25} - 4 q^{26} - 12 q^{29} - 8 q^{31} + 8 q^{34} - 8 q^{35} - 12 q^{40} + 20 q^{41} + 8 q^{44} + 12 q^{46}+ \cdots - 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
514.1
1.00000i
1.00000i
1.00000i 0 1.00000 1.00000 2.00000i 0 2.00000i 3.00000i 0 −2.00000 1.00000i
514.2 1.00000i 0 1.00000 1.00000 + 2.00000i 0 2.00000i 3.00000i 0 −2.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.2.c.b 2
3.b odd 2 1 95.2.b.a 2
5.b even 2 1 inner 855.2.c.b 2
5.c odd 4 1 4275.2.a.e 1
5.c odd 4 1 4275.2.a.p 1
12.b even 2 1 1520.2.d.b 2
15.d odd 2 1 95.2.b.a 2
15.e even 4 1 475.2.a.a 1
15.e even 4 1 475.2.a.c 1
57.d even 2 1 1805.2.b.c 2
60.h even 2 1 1520.2.d.b 2
60.l odd 4 1 7600.2.a.i 1
60.l odd 4 1 7600.2.a.l 1
285.b even 2 1 1805.2.b.c 2
285.j odd 4 1 9025.2.a.c 1
285.j odd 4 1 9025.2.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.b.a 2 3.b odd 2 1
95.2.b.a 2 15.d odd 2 1
475.2.a.a 1 15.e even 4 1
475.2.a.c 1 15.e even 4 1
855.2.c.b 2 1.a even 1 1 trivial
855.2.c.b 2 5.b even 2 1 inner
1520.2.d.b 2 12.b even 2 1
1520.2.d.b 2 60.h even 2 1
1805.2.b.c 2 57.d even 2 1
1805.2.b.c 2 285.b even 2 1
4275.2.a.e 1 5.c odd 4 1
4275.2.a.p 1 5.c odd 4 1
7600.2.a.i 1 60.l odd 4 1
7600.2.a.l 1 60.l odd 4 1
9025.2.a.c 1 285.j odd 4 1
9025.2.a.h 1 285.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(855, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T - 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( (T - 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T + 4)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 324 \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 36 \) Copy content Toggle raw display
show more
show less