L(s) = 1 | − 3-s + 9-s − 4·19-s − 6·25-s − 27-s + 12·29-s − 12·41-s + 8·43-s − 14·49-s − 4·53-s + 4·57-s + 8·59-s − 4·61-s + 16·71-s + 20·73-s + 6·75-s + 81-s − 12·87-s − 12·89-s − 24·107-s + 36·113-s − 6·121-s + 12·123-s + 127-s − 8·129-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 0.917·19-s − 6/5·25-s − 0.192·27-s + 2.22·29-s − 1.87·41-s + 1.21·43-s − 2·49-s − 0.549·53-s + 0.529·57-s + 1.04·59-s − 0.512·61-s + 1.89·71-s + 2.34·73-s + 0.692·75-s + 1/9·81-s − 1.28·87-s − 1.27·89-s − 2.32·107-s + 3.38·113-s − 0.545·121-s + 1.08·123-s + 0.0887·127-s − 0.704·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.231963370\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.231963370\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.189315765477711565741600602856, −8.098990694093691505068092710868, −7.56166057390201911058885859268, −6.76469382211938154314381265806, −6.46690229228638557804627889575, −6.42897107072744719896577758454, −5.46401562398135459513112522798, −5.28928090027433938703648368943, −4.59390935142141694610458902429, −4.25303028692796488061253338187, −3.60315426272723356296220877606, −3.00605862781473236467551878631, −2.24389960969152461475375447009, −1.62494291573219977070674782983, −0.58501762290637151770019444985,
0.58501762290637151770019444985, 1.62494291573219977070674782983, 2.24389960969152461475375447009, 3.00605862781473236467551878631, 3.60315426272723356296220877606, 4.25303028692796488061253338187, 4.59390935142141694610458902429, 5.28928090027433938703648368943, 5.46401562398135459513112522798, 6.42897107072744719896577758454, 6.46690229228638557804627889575, 6.76469382211938154314381265806, 7.56166057390201911058885859268, 8.098990694093691505068092710868, 8.189315765477711565741600602856