Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 67 x^{2} )( 1 + 4 x + 67 x^{2} )$ |
$1 + 118 x^{2} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.421429069538$, $\pm0.578570930462$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $425$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4608$ | $21233664$ | $90458436096$ | $405868407422976$ | $1822837802440647168$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $4726$ | $300764$ | $20141230$ | $1350125108$ | $90458490022$ | $6060711605324$ | $406067709235294$ | $27206534396294948$ | $1822837800329532886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 425 curves (of which all are hyperelliptic):
- $y^2=50 x^6+43 x^5+27 x^4+43 x^3+20 x^2+61 x+44$
- $y^2=33 x^6+19 x^5+54 x^4+19 x^3+40 x^2+55 x+21$
- $y^2=47 x^6+46 x^5+39 x^4+33 x^3+24 x^2+42 x+4$
- $y^2=27 x^6+25 x^5+11 x^4+66 x^3+48 x^2+17 x+8$
- $y^2=58 x^6+14 x^5+54 x^4+7 x^3+26 x^2+12 x+36$
- $y^2=49 x^6+28 x^5+41 x^4+14 x^3+52 x^2+24 x+5$
- $y^2=60 x^6+60 x^5+52 x^4+3 x^3+12 x^2+16 x+1$
- $y^2=53 x^6+53 x^5+37 x^4+6 x^3+24 x^2+32 x+2$
- $y^2=41 x^6+4 x^5+52 x^4+62 x^3+7 x^2+14 x+54$
- $y^2=15 x^6+8 x^5+37 x^4+57 x^3+14 x^2+28 x+41$
- $y^2=11 x^6+22 x^5+17 x^4+9 x^3+35 x^2+55 x+31$
- $y^2=22 x^6+44 x^5+34 x^4+18 x^3+3 x^2+43 x+62$
- $y^2=15 x^6+30 x^5+2 x^4+10 x^3+12 x^2+8 x+24$
- $y^2=30 x^6+60 x^5+4 x^4+20 x^3+24 x^2+16 x+48$
- $y^2=45 x^6+18 x^5+39 x^4+66 x^3+47 x^2+28 x+6$
- $y^2=65 x^6+48 x^5+30 x^4+36 x^3+60 x^2+59 x+34$
- $y^2=63 x^6+29 x^5+60 x^4+5 x^3+53 x^2+51 x+1$
- $y^2=45 x^6+34 x^5+31 x^4+12 x^3+51 x^2+16 x+27$
- $y^2=21 x^6+52 x^5+41 x^4+23 x^3+53 x^2+4 x$
- $y^2=42 x^6+37 x^5+15 x^4+46 x^3+39 x^2+8 x$
- and 405 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.ae $\times$ 1.67.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.eo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.