Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 53 x^{2} )^{2}$ |
$1 + 4 x + 110 x^{2} + 212 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.543861900584$, $\pm0.543861900584$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3136$ | $8479744$ | $22072450624$ | $62184201404416$ | $174909219716478016$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $58$ | $3014$ | $148258$ | $7880910$ | $418247498$ | $22164764438$ | $1174707577010$ | $62259676161694$ | $3299763809131354$ | $174887470686087014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=10 x^6+35 x^5+35 x^4+35 x^3+7 x^2+29 x+38$
- $y^2=42 x^6+17 x^5+44 x^4+30 x^3+10 x^2+32 x+51$
- $y^2=36 x^6+21 x^5+35 x^4+6 x^3+18 x^2+17 x+17$
- $y^2=48 x^6+25 x^5+25 x^4+35 x^3+29 x^2+41 x+30$
- $y^2=26 x^6+30 x^5+4 x^4+45 x^3+17 x^2+45 x+20$
- $y^2=11 x^6+17 x^4+16 x^3+38 x^2+40 x+45$
- $y^2=12 x^6+9 x^5+30 x^4+7 x^3+11 x^2+15 x+26$
- $y^2=43 x^6+24 x^5+46 x^4+47 x^3+37 x^2+4 x+47$
- $y^2=38 x^6+41 x^5+34 x^4+15 x^3+19 x^2+49 x+52$
- $y^2=44 x^6+17 x^4+26 x^3+50 x^2+19 x+1$
- $y^2=16 x^6+8 x^5+21 x^4+15 x^3+35 x^2+50 x+1$
- $y^2=18 x^6+39 x^5+32 x^4+28 x^3+10 x^2+14 x+48$
- $y^2=20 x^6+16 x^5+4 x^4+x^2+24 x+7$
- $y^2=41 x^6+23 x^4+23 x^2+41$
- $y^2=16 x^6+34 x^4+34 x^2+16$
- $y^2=2 x^6+32 x^5+50 x^4+3 x^3+50 x^2+32 x+2$
- $y^2=30 x^5+4 x^4+44 x^3+16 x^2+3 x$
- $y^2=13 x^6+17 x^5+31 x^4+6 x^3+34 x^2+20 x+52$
- $y^2=2 x^6+5 x^5+48 x^4+30 x^3+32 x^2+14 x+32$
- $y^2=23 x^6+x^5+14 x^4+24 x^3+36 x^2+30 x+17$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
Base change
This is a primitive isogeny class.