Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 73 x^{2} )^{2}$ |
$1 - 20 x + 246 x^{2} - 1460 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.301013746420$, $\pm0.301013746420$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $62$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4096$ | $28901376$ | $152262283264$ | $806945377222656$ | $4297619821944180736$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $5422$ | $391398$ | $28415326$ | $2073068694$ | $151332950158$ | $11047385969478$ | $806460059555518$ | $58871587301004534$ | $4297625837991639022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=14 x^6+20 x^5+18 x^4+10 x^3+18 x^2+20 x+14$
- $y^2=35 x^6+22 x^5+43 x^4+69 x^3+32 x^2+28 x+33$
- $y^2=5 x^6+42 x^5+60 x^4+30 x^3+6 x^2+21 x+41$
- $y^2=39 x^6+69 x^5+28 x^4+36 x^3+28 x^2+69 x+39$
- $y^2=66 x^6+10 x^5+8 x^4+70 x^3+35 x^2+34 x+51$
- $y^2=18 x^6+68 x^5+65 x^4+16 x^3+17 x^2+4 x+62$
- $y^2=11 x^6+52 x^5+71 x^4+3 x^3+71 x^2+52 x+11$
- $y^2=22 x^6+8 x^5+70 x^4+50 x^3+65 x^2+65 x+63$
- $y^2=4 x^6+7 x^5+66 x^4+72 x^3+66 x^2+7 x+4$
- $y^2=3 x^6+53 x^5+46 x^4+64 x^3+46 x^2+53 x+3$
- $y^2=51 x^6+68 x^5+61 x^4+51 x^3+20 x^2+69 x+22$
- $y^2=3 x^6+49 x^5+28 x^4+67 x^3+28 x^2+49 x+3$
- $y^2=11 x^6+16 x^5+61 x^4+17 x^3+72 x^2+65 x+33$
- $y^2=50 x^6+21 x^5+35 x^4+18 x^3+35 x^2+21 x+50$
- $y^2=25 x^6+61 x^4+61 x^2+25$
- $y^2=33 x^6+55 x^5+33 x^4+55 x^3+33 x^2+55 x+33$
- $y^2=34 x^6+16 x^4+16 x^2+34$
- $y^2=64 x^6+61 x^5+33 x^4+69 x^3+33 x^2+61 x+64$
- $y^2=69 x^6+5 x^5+34 x^4+47 x^3+34 x^2+5 x+69$
- $y^2=5 x^6+68$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.