L(s) = 1 | + 2·3-s + 4-s − 2·7-s + 9-s + 2·12-s − 8·13-s + 16-s + 8·19-s − 4·21-s − 6·25-s − 4·27-s − 2·28-s − 20·31-s + 36-s − 12·37-s − 16·39-s − 8·43-s + 2·48-s + 3·49-s − 8·52-s + 16·57-s − 16·61-s − 2·63-s + 64-s + 16·67-s + 8·73-s − 12·75-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/2·4-s − 0.755·7-s + 1/3·9-s + 0.577·12-s − 2.21·13-s + 1/4·16-s + 1.83·19-s − 0.872·21-s − 6/5·25-s − 0.769·27-s − 0.377·28-s − 3.59·31-s + 1/6·36-s − 1.97·37-s − 2.56·39-s − 1.21·43-s + 0.288·48-s + 3/7·49-s − 1.10·52-s + 2.11·57-s − 2.04·61-s − 0.251·63-s + 1/8·64-s + 1.95·67-s + 0.936·73-s − 1.38·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.240853610425596933131644882823, −8.085838808436017661666180332862, −7.87359639769148641923907597256, −7.47160076799445304063607589326, −6.89070428269537648461178127009, −6.81376239244202158997461277739, −5.64283316816673405468499778451, −5.41745538950503066981292745262, −4.96360142275870366848623108181, −3.90068439822755419122695958551, −3.29966281651344024951011938340, −3.23324115647284242077206608800, −2.06919705445307860507213607024, −2.00597606234881909225076458985, 0,
2.00597606234881909225076458985, 2.06919705445307860507213607024, 3.23324115647284242077206608800, 3.29966281651344024951011938340, 3.90068439822755419122695958551, 4.96360142275870366848623108181, 5.41745538950503066981292745262, 5.64283316816673405468499778451, 6.81376239244202158997461277739, 6.89070428269537648461178127009, 7.47160076799445304063607589326, 7.87359639769148641923907597256, 8.085838808436017661666180332862, 9.240853610425596933131644882823