Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 10 x + 31 x^{2} )^{2}$ |
| $1 + 20 x + 162 x^{2} + 620 x^{3} + 961 x^{4}$ | |
| Frobenius angles: | $\pm0.854999228987$, $\pm0.854999228987$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1764$ | $853776$ | $891739044$ | $853776000000$ | $819230447328804$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $886$ | $29932$ | $924478$ | $28615252$ | $887613046$ | $27511951372$ | $852894274558$ | $26439610334452$ | $819628304892406$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=26 x^6+2 x^4+2 x^2+26$
- $y^2=x^6+x^3+16$
- $y^2=4 x^6+25 x^5+5 x^4+27 x^3+5 x^2+25 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$| The isogeny class factors as 1.31.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.