Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 47 x^{2} )( 1 + 10 x + 47 x^{2} )$ |
$1 - 6 x^{2} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.239834262915$, $\pm0.760165737085$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $78$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2204$ | $4857616$ | $10779254876$ | $23854081156096$ | $52599132091817564$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2198$ | $103824$ | $4888446$ | $229345008$ | $10779294422$ | $506623120464$ | $23811267776638$ | $1119130473102768$ | $52599131947805078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=46 x^6+5 x^5+30 x^4+20 x^3+34 x^2+20 x+8$
- $y^2=13 x^6+2 x^5+26 x^4+43 x^3+42 x^2+6 x+34$
- $y^2=18 x^6+10 x^5+36 x^4+27 x^3+22 x^2+30 x+29$
- $y^2=9 x^6+13 x^5+16 x^4+7 x^3+41 x^2+29 x+11$
- $y^2=13 x^6+44 x^4+32 x^2+27$
- $y^2=36 x^6+33 x^4+24 x^2+35$
- $y^2=6 x^6+24 x^5+28 x^4+42 x^3+20 x^2+18 x+20$
- $y^2=13 x^6+12 x^5+10 x^4+20 x^3+32 x^2+33 x+19$
- $y^2=18 x^6+13 x^5+3 x^4+6 x^3+19 x^2+24 x+1$
- $y^2=20 x^6+9 x^5+38 x^4+38 x^3+43 x^2+36 x+22$
- $y^2=6 x^6+45 x^5+2 x^4+2 x^3+27 x^2+39 x+16$
- $y^2=42 x^6+25 x^5+11 x^4+27 x^3+24 x^2+29 x+18$
- $y^2=22 x^6+31 x^5+8 x^4+41 x^3+26 x^2+4 x+43$
- $y^2=29 x^6+21 x^5+34 x^4+46 x^2+36 x+25$
- $y^2=25 x^6+30 x^5+2 x^4+2 x^3+41 x^2+35 x+30$
- $y^2=27 x^6+24 x^5+27 x^4+17 x^3+6 x^2+36 x+9$
- $y^2=41 x^6+26 x^5+41 x^4+38 x^3+30 x^2+39 x+45$
- $y^2=20 x^6+18 x^5+35 x^4+29 x^3+21 x^2+14 x+25$
- $y^2=21 x^6+3 x^5+38 x^4+27 x^3+8 x^2+25 x+4$
- $y^2=11 x^6+15 x^5+2 x^4+41 x^3+40 x^2+31 x+20$
- and 58 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.ak $\times$ 1.47.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$ |
Base change
This is a primitive isogeny class.