Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 53 x^{2} )( 1 + 14 x + 53 x^{2} )$ |
| $1 - 90 x^{2} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.0885855327829$, $\pm0.911414467217$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $47$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2720$ | $7398400$ | $22164390560$ | $62220544000000$ | $174887471148701600$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $2630$ | $148878$ | $7885518$ | $418195494$ | $22164419990$ | $1174711139838$ | $62259709652638$ | $3299763591802134$ | $174887471931890150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 47 curves (of which all are hyperelliptic):
- $y^2=17 x^6+x^5+45 x^4+47 x^3+39 x^2+29 x+35$
- $y^2=34 x^6+2 x^5+37 x^4+41 x^3+25 x^2+5 x+17$
- $y^2=21 x^6+4 x^5+27 x^4+52 x^3+49 x^2+33 x+22$
- $y^2=42 x^6+8 x^5+x^4+51 x^3+45 x^2+13 x+44$
- $y^2=x^6+7 x^5+52 x^4+26 x^3+47 x^2+2 x+32$
- $y^2=2 x^6+13 x^5+20 x^4+12 x^2+25 x+14$
- $y^2=39 x^6+38 x^5+38 x^4+35 x^3+23 x^2+20 x+24$
- $y^2=25 x^6+23 x^5+23 x^4+17 x^3+46 x^2+40 x+48$
- $y^2=43 x^6+38 x^5+39 x^4+13 x^3+26 x^2+12 x+14$
- $y^2=25 x^6+12 x^5+24 x^4+3 x^3+36 x^2+26 x+9$
- $y^2=50 x^6+24 x^5+48 x^4+6 x^3+19 x^2+52 x+18$
- $y^2=12 x^6+11 x^5+39 x^4+15 x^3+4 x^2+42 x+11$
- $y^2=39 x^6+50 x^4+28 x^3+47 x^2+47$
- $y^2=5 x^6+8 x^5+40 x^4+50 x^3+48 x^2+17 x$
- $y^2=10 x^6+16 x^5+27 x^4+47 x^3+43 x^2+34 x$
- $y^2=51 x^6+37 x^5+8 x^4+19 x^3+40 x^2+23 x+18$
- $y^2=52 x^6+17 x^5+30 x^4+15 x^3+46 x^2+15 x+8$
- $y^2=4 x^6+45 x^5+31 x^4+47 x^3+36 x^2+18 x+34$
- $y^2=52 x^6+23 x^5+16 x^4+6 x^3+9 x^2+18 x+27$
- $y^2=30 x^6+19 x^5+21 x^4+27 x^3+39 x^2+36 x+27$
- and 27 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ao $\times$ 1.53.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{53^{2}}$ is 1.2809.adm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.