L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 5·16-s − 12·17-s + 2·25-s + 12·29-s − 16·31-s − 6·32-s + 24·34-s − 4·37-s − 12·41-s − 2·49-s − 4·50-s − 24·58-s + 32·62-s + 7·64-s + 8·67-s − 36·68-s + 8·74-s + 24·82-s − 24·83-s − 20·97-s + 4·98-s + 6·100-s − 36·101-s − 32·103-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s + 5/4·16-s − 2.91·17-s + 2/5·25-s + 2.22·29-s − 2.87·31-s − 1.06·32-s + 4.11·34-s − 0.657·37-s − 1.87·41-s − 2/7·49-s − 0.565·50-s − 3.15·58-s + 4.06·62-s + 7/8·64-s + 0.977·67-s − 4.36·68-s + 0.929·74-s + 2.65·82-s − 2.63·83-s − 2.03·97-s + 0.404·98-s + 3/5·100-s − 3.58·101-s − 3.15·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.045988152678817840719674687896, −8.414051045401048384443744734986, −8.312552229113317140821571033089, −7.974118909830113277898075007181, −7.17674159499947426540572613454, −6.84570371632624073085198253387, −6.75578396103136766201724422059, −6.58787292885126702103827837214, −5.67920969573548208024374822969, −5.47094007033801386776092476236, −4.89405740597908458181000854011, −4.36076629803567189039731581546, −3.95677079647513392939892075495, −3.35902641318813610654946834557, −2.56169948959042292204830253299, −2.53889350872144173817929234141, −1.64980167632186299370178743758, −1.39634000930191349015784829104, 0, 0,
1.39634000930191349015784829104, 1.64980167632186299370178743758, 2.53889350872144173817929234141, 2.56169948959042292204830253299, 3.35902641318813610654946834557, 3.95677079647513392939892075495, 4.36076629803567189039731581546, 4.89405740597908458181000854011, 5.47094007033801386776092476236, 5.67920969573548208024374822969, 6.58787292885126702103827837214, 6.75578396103136766201724422059, 6.84570371632624073085198253387, 7.17674159499947426540572613454, 7.974118909830113277898075007181, 8.312552229113317140821571033089, 8.414051045401048384443744734986, 9.045988152678817840719674687896