Invariants
| Base field: | $\F_{19}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 10 x^{2} + 361 x^{4}$ | 
| Frobenius angles: | $\pm0.207617990860$, $\pm0.792382009140$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{3}, \sqrt{-7})\) | 
| Galois group: | $C_2^2$ | 
| Jacobians: | $34$ | 
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $352$ | $123904$ | $47055712$ | $17146331136$ | $6131061446752$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $20$ | $342$ | $6860$ | $131566$ | $2476100$ | $47065542$ | $893871740$ | $16983310558$ | $322687697780$ | $6131056635702$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):
- $y^2=7 x^6+14 x^4+12 x^2+17 x+17$
 - $y^2=2 x^6+15 x^5+2 x^4+11 x^3+18 x^2+13 x+14$
 - $y^2=4 x^6+11 x^5+4 x^4+3 x^3+17 x^2+7 x+9$
 - $y^2=5 x^6+2 x^5+14 x^3+11 x^2+5 x+1$
 - $y^2=x^6+18 x^5+8 x^3+12 x+18$
 - $y^2=7 x^6+11 x^5+2 x^4+7 x^3+11 x^2+5 x+8$
 - $y^2=18 x^6+10 x^5+6 x^4+18 x^3+15 x^2+2 x+6$
 - $y^2=11 x^6+9 x^5+12 x^4+6 x^3+9 x^2+11 x+18$
 - $y^2=11 x^6+2 x^5+13 x^4+11 x^3+16 x^2+10 x+18$
 - $y^2=3 x^5+16 x^4+17 x^3+9 x^2+7 x+13$
 - $y^2=6 x^5+13 x^4+15 x^3+18 x^2+14 x+7$
 - $y^2=x^6+10 x^5+x^4+4 x^3+14 x^2+18 x+2$
 - $y^2=14 x^6+6 x^5+18 x^4+8 x^3+x^2+10 x+6$
 - $y^2=6 x^6+18 x^5+14 x^4+6 x^3+16 x^2+5$
 - $y^2=3 x^6+5 x^5+11 x^4+11 x^3+7 x+7$
 - $y^2=6 x^6+10 x^5+3 x^4+3 x^3+14 x+14$
 - $y^2=11 x^6+3 x^5+6 x^4+9 x^3+6 x^2+8 x+18$
 - $y^2=x^6+18 x^5+5 x^4+15 x^3+17 x^2+6 x+16$
 - $y^2=10 x^6+4 x^5+9 x^4+18 x^3+8 x^2+17 x+10$
 - $y^2=12 x^6+13 x^5+16 x^4+15 x^3+10 x^2+9 x+6$
 - and 14 more
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-7})\). | 
| The base change of $A$ to $\F_{19^{2}}$ is 1.361.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-21}) \)$)$ | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.19.a_k | $4$ | (not in LMFDB) | 
| 2.19.am_cp | $12$ | (not in LMFDB) | 
| 2.19.m_cp | $12$ | (not in LMFDB) |