Invariants
| Base field: | $\F_{23}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 + 34 x^{2} + 529 x^{4}$ | 
| Frobenius angles: | $\pm0.382381651522$, $\pm0.617618348478$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{3}, \sqrt{-5})\) | 
| Galois group: | $C_2^2$ | 
| Jacobians: | $56$ | 
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $564$ | $318096$ | $148021236$ | $78256705536$ | $41426500262964$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $598$ | $12168$ | $279646$ | $6436344$ | $148006582$ | $3404825448$ | $78312085438$ | $1801152661464$ | $41426489312278$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=20 x^6+15 x^5+7 x^4+22 x^3+17 x^2+7 x+10$
 - $y^2=8 x^6+6 x^5+12 x^4+18 x^3+16 x^2+12 x+4$
 - $y^2=x^6+x^3+15$
 - $y^2=18 x^6+20 x^4+2 x^3+22 x+6$
 - $y^2=21 x^6+8 x^4+10 x^3+18 x+7$
 - $y^2=5 x^6+14 x^5+13 x^4+20 x^2+19 x+11$
 - $y^2=2 x^6+x^5+19 x^4+8 x^2+3 x+9$
 - $y^2=14 x^6+10 x^5+13 x^4+15 x^3+10 x^2+10 x+9$
 - $y^2=21 x^6+21 x^5+7 x^4+6 x^3+15 x+11$
 - $y^2=13 x^6+13 x^5+12 x^4+7 x^3+6 x+9$
 - $y^2=x^6+x^3+20$
 - $y^2=11 x^6+5 x^5+6 x^4+7 x^3+4 x^2+15 x+19$
 - $y^2=9 x^6+2 x^5+7 x^4+12 x^3+20 x^2+6 x+3$
 - $y^2=13 x^6+14 x^5+14 x^4+8 x^3+18 x^2+15 x+6$
 - $y^2=x^6+x^3+21$
 - $y^2=x^6+x^3+10$
 - $y^2=7 x^6+12 x^5+21 x^4+17 x^3+12 x^2+14 x+13$
 - $y^2=20 x^6+11 x^5+8 x^4+20 x^3+7 x^2+12 x+1$
 - $y^2=2 x^6+22 x^5+15 x^4+12 x^3+22 x^2+2 x+17$
 - $y^2=10 x^6+18 x^5+6 x^4+14 x^3+18 x^2+10 x+16$
 - and 36 more
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-5})\). | 
| The base change of $A$ to $\F_{23^{2}}$ is 1.529.bi 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.23.a_abi | $4$ | (not in LMFDB) | 
| 2.23.ag_bj | $12$ | (not in LMFDB) | 
| 2.23.g_bj | $12$ | (not in LMFDB) |