Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.246996898344$, $\pm0.753003101656$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-26})\) |
Galois group: | $C_2^2$ |
Jacobians: | $312$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2808$ | $7884864$ | $22164377976$ | $62348332041216$ | $174887470286720568$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2806$ | $148878$ | $7901710$ | $418195494$ | $22164394822$ | $1174711139838$ | $62259658939294$ | $3299763591802134$ | $174887470207928086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 312 curves (of which all are hyperelliptic):
- $y^2=8 x^6+43 x^5+33 x^4+34 x^3+6 x^2+11 x+18$
- $y^2=16 x^6+33 x^5+13 x^4+15 x^3+12 x^2+22 x+36$
- $y^2=45 x^6+24 x^5+9 x^4+25 x^3+36 x^2+2 x+39$
- $y^2=37 x^6+48 x^5+18 x^4+50 x^3+19 x^2+4 x+25$
- $y^2=42 x^6+32 x^5+34 x^4+2 x^3+50 x^2+5 x$
- $y^2=31 x^6+11 x^5+15 x^4+4 x^3+47 x^2+10 x$
- $y^2=51 x^6+23 x^5+35 x^4+51 x^3+11 x^2+27 x+37$
- $y^2=49 x^6+46 x^5+17 x^4+49 x^3+22 x^2+x+21$
- $y^2=51 x^6+x^5+35 x^4+52 x^3+25 x^2+9 x+22$
- $y^2=49 x^6+2 x^5+17 x^4+51 x^3+50 x^2+18 x+44$
- $y^2=4 x^6+32 x^5+49 x^4+39 x^3+12 x^2+21 x+34$
- $y^2=49 x^6+17 x^5+30 x^4+48 x^3+8 x^2+34 x+24$
- $y^2=45 x^6+34 x^5+7 x^4+43 x^3+16 x^2+15 x+48$
- $y^2=18 x^6+20 x^5+46 x^4+23 x^3+34 x^2+17 x+43$
- $y^2=36 x^6+40 x^5+39 x^4+46 x^3+15 x^2+34 x+33$
- $y^2=13 x^6+8 x^5+44 x^4+22 x^3+43 x^2+42 x+5$
- $y^2=26 x^6+16 x^5+35 x^4+44 x^3+33 x^2+31 x+10$
- $y^2=8 x^6+19 x^5+32 x^4+32 x^3+10 x^2+15$
- $y^2=16 x^6+38 x^5+11 x^4+11 x^3+20 x^2+30$
- $y^2=30 x^6+22 x^5+31 x^4+35 x^3+x^2+46 x+25$
- and 292 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-26})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-78}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_c | $4$ | (not in LMFDB) |
2.53.as_gf | $12$ | (not in LMFDB) |
2.53.s_gf | $12$ | (not in LMFDB) |