Properties

Label 2178.2.a.q.1.1
Level $2178$
Weight $2$
Character 2178.1
Self dual yes
Analytic conductor $17.391$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,2,Mod(1,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2178.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,0,0,0,-2,0,0,0,0,0,0,0,2,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3914175602\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 2178.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.46410 q^{5} +3.46410 q^{7} -1.00000 q^{8} +3.46410 q^{10} +3.46410 q^{13} -3.46410 q^{14} +1.00000 q^{16} -6.00000 q^{17} -6.92820 q^{19} -3.46410 q^{20} +3.46410 q^{23} +7.00000 q^{25} -3.46410 q^{26} +3.46410 q^{28} +6.00000 q^{29} -8.00000 q^{31} -1.00000 q^{32} +6.00000 q^{34} -12.0000 q^{35} -2.00000 q^{37} +6.92820 q^{38} +3.46410 q^{40} -6.00000 q^{41} -3.46410 q^{46} +10.3923 q^{47} +5.00000 q^{49} -7.00000 q^{50} +3.46410 q^{52} +10.3923 q^{53} -3.46410 q^{56} -6.00000 q^{58} +6.92820 q^{59} -3.46410 q^{61} +8.00000 q^{62} +1.00000 q^{64} -12.0000 q^{65} +4.00000 q^{67} -6.00000 q^{68} +12.0000 q^{70} +3.46410 q^{71} -13.8564 q^{73} +2.00000 q^{74} -6.92820 q^{76} -3.46410 q^{79} -3.46410 q^{80} +6.00000 q^{82} -12.0000 q^{83} +20.7846 q^{85} -13.8564 q^{89} +12.0000 q^{91} +3.46410 q^{92} -10.3923 q^{94} +24.0000 q^{95} -10.0000 q^{97} -5.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} + 2 q^{16} - 12 q^{17} + 14 q^{25} + 12 q^{29} - 16 q^{31} - 2 q^{32} + 12 q^{34} - 24 q^{35} - 4 q^{37} - 12 q^{41} + 10 q^{49} - 14 q^{50} - 12 q^{58} + 16 q^{62} + 2 q^{64}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.46410 −1.54919 −0.774597 0.632456i \(-0.782047\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 0 0
\(7\) 3.46410 1.30931 0.654654 0.755929i \(-0.272814\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.46410 1.09545
\(11\) 0 0
\(12\) 0 0
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) −3.46410 −0.925820
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) −6.92820 −1.58944 −0.794719 0.606977i \(-0.792382\pi\)
−0.794719 + 0.606977i \(0.792382\pi\)
\(20\) −3.46410 −0.774597
\(21\) 0 0
\(22\) 0 0
\(23\) 3.46410 0.722315 0.361158 0.932505i \(-0.382382\pi\)
0.361158 + 0.932505i \(0.382382\pi\)
\(24\) 0 0
\(25\) 7.00000 1.40000
\(26\) −3.46410 −0.679366
\(27\) 0 0
\(28\) 3.46410 0.654654
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) −12.0000 −2.02837
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 6.92820 1.12390
\(39\) 0 0
\(40\) 3.46410 0.547723
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −3.46410 −0.510754
\(47\) 10.3923 1.51587 0.757937 0.652328i \(-0.226208\pi\)
0.757937 + 0.652328i \(0.226208\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) −7.00000 −0.989949
\(51\) 0 0
\(52\) 3.46410 0.480384
\(53\) 10.3923 1.42749 0.713746 0.700404i \(-0.246997\pi\)
0.713746 + 0.700404i \(0.246997\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3.46410 −0.462910
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 6.92820 0.901975 0.450988 0.892530i \(-0.351072\pi\)
0.450988 + 0.892530i \(0.351072\pi\)
\(60\) 0 0
\(61\) −3.46410 −0.443533 −0.221766 0.975100i \(-0.571182\pi\)
−0.221766 + 0.975100i \(0.571182\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −6.00000 −0.727607
\(69\) 0 0
\(70\) 12.0000 1.43427
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) −13.8564 −1.62177 −0.810885 0.585206i \(-0.801014\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −6.92820 −0.794719
\(77\) 0 0
\(78\) 0 0
\(79\) −3.46410 −0.389742 −0.194871 0.980829i \(-0.562429\pi\)
−0.194871 + 0.980829i \(0.562429\pi\)
\(80\) −3.46410 −0.387298
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 20.7846 2.25441
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.8564 −1.46878 −0.734388 0.678730i \(-0.762531\pi\)
−0.734388 + 0.678730i \(0.762531\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 3.46410 0.361158
\(93\) 0 0
\(94\) −10.3923 −1.07188
\(95\) 24.0000 2.46235
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −5.00000 −0.505076
\(99\) 0 0
\(100\) 7.00000 0.700000
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) −3.46410 −0.339683
\(105\) 0 0
\(106\) −10.3923 −1.00939
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −10.3923 −0.995402 −0.497701 0.867349i \(-0.665822\pi\)
−0.497701 + 0.867349i \(0.665822\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 3.46410 0.327327
\(113\) −13.8564 −1.30350 −0.651751 0.758433i \(-0.725965\pi\)
−0.651751 + 0.758433i \(0.725965\pi\)
\(114\) 0 0
\(115\) −12.0000 −1.11901
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) −6.92820 −0.637793
\(119\) −20.7846 −1.90532
\(120\) 0 0
\(121\) 0 0
\(122\) 3.46410 0.313625
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) −6.92820 −0.619677
\(126\) 0 0
\(127\) 10.3923 0.922168 0.461084 0.887357i \(-0.347461\pi\)
0.461084 + 0.887357i \(0.347461\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 12.0000 1.05247
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −24.0000 −2.08106
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) −6.92820 −0.591916 −0.295958 0.955201i \(-0.595639\pi\)
−0.295958 + 0.955201i \(0.595639\pi\)
\(138\) 0 0
\(139\) 6.92820 0.587643 0.293821 0.955860i \(-0.405073\pi\)
0.293821 + 0.955860i \(0.405073\pi\)
\(140\) −12.0000 −1.01419
\(141\) 0 0
\(142\) −3.46410 −0.290701
\(143\) 0 0
\(144\) 0 0
\(145\) −20.7846 −1.72607
\(146\) 13.8564 1.14676
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −3.46410 −0.281905 −0.140952 0.990016i \(-0.545016\pi\)
−0.140952 + 0.990016i \(0.545016\pi\)
\(152\) 6.92820 0.561951
\(153\) 0 0
\(154\) 0 0
\(155\) 27.7128 2.22595
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 3.46410 0.275589
\(159\) 0 0
\(160\) 3.46410 0.273861
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −20.7846 −1.59411
\(171\) 0 0
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 24.2487 1.83303
\(176\) 0 0
\(177\) 0 0
\(178\) 13.8564 1.03858
\(179\) −6.92820 −0.517838 −0.258919 0.965899i \(-0.583366\pi\)
−0.258919 + 0.965899i \(0.583366\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −12.0000 −0.889499
\(183\) 0 0
\(184\) −3.46410 −0.255377
\(185\) 6.92820 0.509372
\(186\) 0 0
\(187\) 0 0
\(188\) 10.3923 0.757937
\(189\) 0 0
\(190\) −24.0000 −1.74114
\(191\) −17.3205 −1.25327 −0.626634 0.779314i \(-0.715568\pi\)
−0.626634 + 0.779314i \(0.715568\pi\)
\(192\) 0 0
\(193\) −6.92820 −0.498703 −0.249351 0.968413i \(-0.580217\pi\)
−0.249351 + 0.968413i \(0.580217\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 5.00000 0.357143
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) −7.00000 −0.494975
\(201\) 0 0
\(202\) 18.0000 1.26648
\(203\) 20.7846 1.45879
\(204\) 0 0
\(205\) 20.7846 1.45166
\(206\) 16.0000 1.11477
\(207\) 0 0
\(208\) 3.46410 0.240192
\(209\) 0 0
\(210\) 0 0
\(211\) 27.7128 1.90783 0.953914 0.300079i \(-0.0970130\pi\)
0.953914 + 0.300079i \(0.0970130\pi\)
\(212\) 10.3923 0.713746
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −27.7128 −1.88127
\(218\) 10.3923 0.703856
\(219\) 0 0
\(220\) 0 0
\(221\) −20.7846 −1.39812
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) −3.46410 −0.231455
\(225\) 0 0
\(226\) 13.8564 0.921714
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 12.0000 0.791257
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −36.0000 −2.34838
\(236\) 6.92820 0.450988
\(237\) 0 0
\(238\) 20.7846 1.34727
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 6.92820 0.446285 0.223142 0.974786i \(-0.428369\pi\)
0.223142 + 0.974786i \(0.428369\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −3.46410 −0.221766
\(245\) −17.3205 −1.10657
\(246\) 0 0
\(247\) −24.0000 −1.52708
\(248\) 8.00000 0.508001
\(249\) 0 0
\(250\) 6.92820 0.438178
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −10.3923 −0.652071
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −6.92820 −0.430498
\(260\) −12.0000 −0.744208
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −36.0000 −2.21146
\(266\) 24.0000 1.47153
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 10.3923 0.633630 0.316815 0.948487i \(-0.397387\pi\)
0.316815 + 0.948487i \(0.397387\pi\)
\(270\) 0 0
\(271\) 3.46410 0.210429 0.105215 0.994450i \(-0.466447\pi\)
0.105215 + 0.994450i \(0.466447\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) 6.92820 0.418548
\(275\) 0 0
\(276\) 0 0
\(277\) 10.3923 0.624413 0.312207 0.950014i \(-0.398932\pi\)
0.312207 + 0.950014i \(0.398932\pi\)
\(278\) −6.92820 −0.415526
\(279\) 0 0
\(280\) 12.0000 0.717137
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 3.46410 0.205557
\(285\) 0 0
\(286\) 0 0
\(287\) −20.7846 −1.22688
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 20.7846 1.22051
\(291\) 0 0
\(292\) −13.8564 −0.810885
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) 0 0
\(302\) 3.46410 0.199337
\(303\) 0 0
\(304\) −6.92820 −0.397360
\(305\) 12.0000 0.687118
\(306\) 0 0
\(307\) −20.7846 −1.18624 −0.593120 0.805114i \(-0.702104\pi\)
−0.593120 + 0.805114i \(0.702104\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −27.7128 −1.57398
\(311\) 31.1769 1.76788 0.883940 0.467600i \(-0.154881\pi\)
0.883940 + 0.467600i \(0.154881\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) −3.46410 −0.194871
\(317\) 3.46410 0.194563 0.0972817 0.995257i \(-0.468985\pi\)
0.0972817 + 0.995257i \(0.468985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −3.46410 −0.193649
\(321\) 0 0
\(322\) −12.0000 −0.668734
\(323\) 41.5692 2.31297
\(324\) 0 0
\(325\) 24.2487 1.34508
\(326\) −8.00000 −0.443079
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 36.0000 1.98474
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) −13.8564 −0.757056
\(336\) 0 0
\(337\) −27.7128 −1.50961 −0.754807 0.655947i \(-0.772269\pi\)
−0.754807 + 0.655947i \(0.772269\pi\)
\(338\) 1.00000 0.0543928
\(339\) 0 0
\(340\) 20.7846 1.12720
\(341\) 0 0
\(342\) 0 0
\(343\) −6.92820 −0.374088
\(344\) 0 0
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 3.46410 0.185429 0.0927146 0.995693i \(-0.470446\pi\)
0.0927146 + 0.995693i \(0.470446\pi\)
\(350\) −24.2487 −1.29615
\(351\) 0 0
\(352\) 0 0
\(353\) 13.8564 0.737502 0.368751 0.929528i \(-0.379785\pi\)
0.368751 + 0.929528i \(0.379785\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) −13.8564 −0.734388
\(357\) 0 0
\(358\) 6.92820 0.366167
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 29.0000 1.52632
\(362\) −2.00000 −0.105118
\(363\) 0 0
\(364\) 12.0000 0.628971
\(365\) 48.0000 2.51243
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 3.46410 0.180579
\(369\) 0 0
\(370\) −6.92820 −0.360180
\(371\) 36.0000 1.86903
\(372\) 0 0
\(373\) −24.2487 −1.25555 −0.627775 0.778395i \(-0.716034\pi\)
−0.627775 + 0.778395i \(0.716034\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −10.3923 −0.535942
\(377\) 20.7846 1.07046
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 24.0000 1.23117
\(381\) 0 0
\(382\) 17.3205 0.886194
\(383\) 3.46410 0.177007 0.0885037 0.996076i \(-0.471792\pi\)
0.0885037 + 0.996076i \(0.471792\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.92820 0.352636
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) −3.46410 −0.175637 −0.0878185 0.996136i \(-0.527990\pi\)
−0.0878185 + 0.996136i \(0.527990\pi\)
\(390\) 0 0
\(391\) −20.7846 −1.05112
\(392\) −5.00000 −0.252538
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 8.00000 0.401004
\(399\) 0 0
\(400\) 7.00000 0.350000
\(401\) −20.7846 −1.03793 −0.518967 0.854794i \(-0.673683\pi\)
−0.518967 + 0.854794i \(0.673683\pi\)
\(402\) 0 0
\(403\) −27.7128 −1.38047
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) −20.7846 −1.03152
\(407\) 0 0
\(408\) 0 0
\(409\) 6.92820 0.342578 0.171289 0.985221i \(-0.445207\pi\)
0.171289 + 0.985221i \(0.445207\pi\)
\(410\) −20.7846 −1.02648
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 24.0000 1.18096
\(414\) 0 0
\(415\) 41.5692 2.04055
\(416\) −3.46410 −0.169842
\(417\) 0 0
\(418\) 0 0
\(419\) 20.7846 1.01539 0.507697 0.861536i \(-0.330497\pi\)
0.507697 + 0.861536i \(0.330497\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) −27.7128 −1.34904
\(423\) 0 0
\(424\) −10.3923 −0.504695
\(425\) −42.0000 −2.03730
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 27.7128 1.33026
\(435\) 0 0
\(436\) −10.3923 −0.497701
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) −31.1769 −1.48799 −0.743996 0.668184i \(-0.767072\pi\)
−0.743996 + 0.668184i \(0.767072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 20.7846 0.988623
\(443\) −34.6410 −1.64584 −0.822922 0.568154i \(-0.807658\pi\)
−0.822922 + 0.568154i \(0.807658\pi\)
\(444\) 0 0
\(445\) 48.0000 2.27542
\(446\) 16.0000 0.757622
\(447\) 0 0
\(448\) 3.46410 0.163663
\(449\) 6.92820 0.326962 0.163481 0.986546i \(-0.447728\pi\)
0.163481 + 0.986546i \(0.447728\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −13.8564 −0.651751
\(453\) 0 0
\(454\) 24.0000 1.12638
\(455\) −41.5692 −1.94880
\(456\) 0 0
\(457\) −20.7846 −0.972263 −0.486132 0.873886i \(-0.661592\pi\)
−0.486132 + 0.873886i \(0.661592\pi\)
\(458\) −10.0000 −0.467269
\(459\) 0 0
\(460\) −12.0000 −0.559503
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) −13.8564 −0.641198 −0.320599 0.947215i \(-0.603884\pi\)
−0.320599 + 0.947215i \(0.603884\pi\)
\(468\) 0 0
\(469\) 13.8564 0.639829
\(470\) 36.0000 1.66056
\(471\) 0 0
\(472\) −6.92820 −0.318896
\(473\) 0 0
\(474\) 0 0
\(475\) −48.4974 −2.22521
\(476\) −20.7846 −0.952661
\(477\) 0 0
\(478\) 24.0000 1.09773
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −6.92820 −0.315899
\(482\) −6.92820 −0.315571
\(483\) 0 0
\(484\) 0 0
\(485\) 34.6410 1.57297
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 3.46410 0.156813
\(489\) 0 0
\(490\) 17.3205 0.782461
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 12.0000 0.538274
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) −6.92820 −0.309839
\(501\) 0 0
\(502\) 6.92820 0.309221
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 62.3538 2.77471
\(506\) 0 0
\(507\) 0 0
\(508\) 10.3923 0.461084
\(509\) 24.2487 1.07481 0.537403 0.843326i \(-0.319406\pi\)
0.537403 + 0.843326i \(0.319406\pi\)
\(510\) 0 0
\(511\) −48.0000 −2.12339
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 0 0
\(515\) 55.4256 2.44234
\(516\) 0 0
\(517\) 0 0
\(518\) 6.92820 0.304408
\(519\) 0 0
\(520\) 12.0000 0.526235
\(521\) 6.92820 0.303530 0.151765 0.988417i \(-0.451504\pi\)
0.151765 + 0.988417i \(0.451504\pi\)
\(522\) 0 0
\(523\) −13.8564 −0.605898 −0.302949 0.953007i \(-0.597971\pi\)
−0.302949 + 0.953007i \(0.597971\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 0 0
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) 36.0000 1.56374
\(531\) 0 0
\(532\) −24.0000 −1.04053
\(533\) −20.7846 −0.900281
\(534\) 0 0
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) −10.3923 −0.448044
\(539\) 0 0
\(540\) 0 0
\(541\) 17.3205 0.744667 0.372333 0.928099i \(-0.378558\pi\)
0.372333 + 0.928099i \(0.378558\pi\)
\(542\) −3.46410 −0.148796
\(543\) 0 0
\(544\) 6.00000 0.257248
\(545\) 36.0000 1.54207
\(546\) 0 0
\(547\) −6.92820 −0.296229 −0.148114 0.988970i \(-0.547320\pi\)
−0.148114 + 0.988970i \(0.547320\pi\)
\(548\) −6.92820 −0.295958
\(549\) 0 0
\(550\) 0 0
\(551\) −41.5692 −1.77091
\(552\) 0 0
\(553\) −12.0000 −0.510292
\(554\) −10.3923 −0.441527
\(555\) 0 0
\(556\) 6.92820 0.293821
\(557\) −30.0000 −1.27114 −0.635570 0.772043i \(-0.719235\pi\)
−0.635570 + 0.772043i \(0.719235\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −12.0000 −0.507093
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) 48.0000 2.01938
\(566\) 0 0
\(567\) 0 0
\(568\) −3.46410 −0.145350
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 6.92820 0.289936 0.144968 0.989436i \(-0.453692\pi\)
0.144968 + 0.989436i \(0.453692\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 20.7846 0.867533
\(575\) 24.2487 1.01124
\(576\) 0 0
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) −19.0000 −0.790296
\(579\) 0 0
\(580\) −20.7846 −0.863034
\(581\) −41.5692 −1.72458
\(582\) 0 0
\(583\) 0 0
\(584\) 13.8564 0.573382
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 20.7846 0.857873 0.428936 0.903335i \(-0.358888\pi\)
0.428936 + 0.903335i \(0.358888\pi\)
\(588\) 0 0
\(589\) 55.4256 2.28377
\(590\) 24.0000 0.988064
\(591\) 0 0
\(592\) −2.00000 −0.0821995
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 72.0000 2.95171
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) −12.0000 −0.490716
\(599\) −10.3923 −0.424618 −0.212309 0.977203i \(-0.568098\pi\)
−0.212309 + 0.977203i \(0.568098\pi\)
\(600\) 0 0
\(601\) 41.5692 1.69564 0.847822 0.530281i \(-0.177914\pi\)
0.847822 + 0.530281i \(0.177914\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.46410 −0.140952
\(605\) 0 0
\(606\) 0 0
\(607\) −17.3205 −0.703018 −0.351509 0.936185i \(-0.614331\pi\)
−0.351509 + 0.936185i \(0.614331\pi\)
\(608\) 6.92820 0.280976
\(609\) 0 0
\(610\) −12.0000 −0.485866
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) −17.3205 −0.699569 −0.349784 0.936830i \(-0.613745\pi\)
−0.349784 + 0.936830i \(0.613745\pi\)
\(614\) 20.7846 0.838799
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 27.7128 1.11297
\(621\) 0 0
\(622\) −31.1769 −1.25008
\(623\) −48.0000 −1.92308
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) 10.0000 0.399043
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 3.46410 0.137795
\(633\) 0 0
\(634\) −3.46410 −0.137577
\(635\) −36.0000 −1.42862
\(636\) 0 0
\(637\) 17.3205 0.686264
\(638\) 0 0
\(639\) 0 0
\(640\) 3.46410 0.136931
\(641\) 6.92820 0.273648 0.136824 0.990595i \(-0.456311\pi\)
0.136824 + 0.990595i \(0.456311\pi\)
\(642\) 0 0
\(643\) 44.0000 1.73519 0.867595 0.497271i \(-0.165665\pi\)
0.867595 + 0.497271i \(0.165665\pi\)
\(644\) 12.0000 0.472866
\(645\) 0 0
\(646\) −41.5692 −1.63552
\(647\) −24.2487 −0.953315 −0.476658 0.879089i \(-0.658152\pi\)
−0.476658 + 0.879089i \(0.658152\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −24.2487 −0.951113
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) 45.0333 1.76229 0.881145 0.472846i \(-0.156773\pi\)
0.881145 + 0.472846i \(0.156773\pi\)
\(654\) 0 0
\(655\) 41.5692 1.62424
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −36.0000 −1.40343
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 83.1384 3.22397
\(666\) 0 0
\(667\) 20.7846 0.804783
\(668\) 0 0
\(669\) 0 0
\(670\) 13.8564 0.535320
\(671\) 0 0
\(672\) 0 0
\(673\) 34.6410 1.33531 0.667657 0.744469i \(-0.267297\pi\)
0.667657 + 0.744469i \(0.267297\pi\)
\(674\) 27.7128 1.06746
\(675\) 0 0
\(676\) −1.00000 −0.0384615
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) −34.6410 −1.32940
\(680\) −20.7846 −0.797053
\(681\) 0 0
\(682\) 0 0
\(683\) −20.7846 −0.795301 −0.397650 0.917537i \(-0.630174\pi\)
−0.397650 + 0.917537i \(0.630174\pi\)
\(684\) 0 0
\(685\) 24.0000 0.916993
\(686\) 6.92820 0.264520
\(687\) 0 0
\(688\) 0 0
\(689\) 36.0000 1.37149
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −24.0000 −0.910372
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) −3.46410 −0.131118
\(699\) 0 0
\(700\) 24.2487 0.916515
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 13.8564 0.522604
\(704\) 0 0
\(705\) 0 0
\(706\) −13.8564 −0.521493
\(707\) −62.3538 −2.34506
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 12.0000 0.450352
\(711\) 0 0
\(712\) 13.8564 0.519291
\(713\) −27.7128 −1.03785
\(714\) 0 0
\(715\) 0 0
\(716\) −6.92820 −0.258919
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) −24.2487 −0.904324 −0.452162 0.891936i \(-0.649347\pi\)
−0.452162 + 0.891936i \(0.649347\pi\)
\(720\) 0 0
\(721\) −55.4256 −2.06416
\(722\) −29.0000 −1.07927
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) 42.0000 1.55984
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) −12.0000 −0.444750
\(729\) 0 0
\(730\) −48.0000 −1.77656
\(731\) 0 0
\(732\) 0 0
\(733\) 31.1769 1.15155 0.575773 0.817610i \(-0.304701\pi\)
0.575773 + 0.817610i \(0.304701\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) −3.46410 −0.127688
\(737\) 0 0
\(738\) 0 0
\(739\) 41.5692 1.52915 0.764574 0.644536i \(-0.222949\pi\)
0.764574 + 0.644536i \(0.222949\pi\)
\(740\) 6.92820 0.254686
\(741\) 0 0
\(742\) −36.0000 −1.32160
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 20.7846 0.761489
\(746\) 24.2487 0.887808
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 10.3923 0.378968
\(753\) 0 0
\(754\) −20.7846 −0.756931
\(755\) 12.0000 0.436725
\(756\) 0 0
\(757\) 46.0000 1.67190 0.835949 0.548807i \(-0.184918\pi\)
0.835949 + 0.548807i \(0.184918\pi\)
\(758\) 16.0000 0.581146
\(759\) 0 0
\(760\) −24.0000 −0.870572
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) −36.0000 −1.30329
\(764\) −17.3205 −0.626634
\(765\) 0 0
\(766\) −3.46410 −0.125163
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) −6.92820 −0.249837 −0.124919 0.992167i \(-0.539867\pi\)
−0.124919 + 0.992167i \(0.539867\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6.92820 −0.249351
\(773\) 10.3923 0.373785 0.186893 0.982380i \(-0.440158\pi\)
0.186893 + 0.982380i \(0.440158\pi\)
\(774\) 0 0
\(775\) −56.0000 −2.01158
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) 3.46410 0.124194
\(779\) 41.5692 1.48937
\(780\) 0 0
\(781\) 0 0
\(782\) 20.7846 0.743256
\(783\) 0 0
\(784\) 5.00000 0.178571
\(785\) −34.6410 −1.23639
\(786\) 0 0
\(787\) 27.7128 0.987855 0.493928 0.869503i \(-0.335561\pi\)
0.493928 + 0.869503i \(0.335561\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) −48.0000 −1.70668
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 24.2487 0.858933 0.429467 0.903083i \(-0.358702\pi\)
0.429467 + 0.903083i \(0.358702\pi\)
\(798\) 0 0
\(799\) −62.3538 −2.20592
\(800\) −7.00000 −0.247487
\(801\) 0 0
\(802\) 20.7846 0.733930
\(803\) 0 0
\(804\) 0 0
\(805\) −41.5692 −1.46512
\(806\) 27.7128 0.976142
\(807\) 0 0
\(808\) 18.0000 0.633238
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 41.5692 1.45969 0.729846 0.683611i \(-0.239592\pi\)
0.729846 + 0.683611i \(0.239592\pi\)
\(812\) 20.7846 0.729397
\(813\) 0 0
\(814\) 0 0
\(815\) −27.7128 −0.970737
\(816\) 0 0
\(817\) 0 0
\(818\) −6.92820 −0.242239
\(819\) 0 0
\(820\) 20.7846 0.725830
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 38.0000 1.31979 0.659897 0.751356i \(-0.270600\pi\)
0.659897 + 0.751356i \(0.270600\pi\)
\(830\) −41.5692 −1.44289
\(831\) 0 0
\(832\) 3.46410 0.120096
\(833\) −30.0000 −1.03944
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −20.7846 −0.717992
\(839\) −17.3205 −0.597970 −0.298985 0.954258i \(-0.596648\pi\)
−0.298985 + 0.954258i \(0.596648\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −22.0000 −0.758170
\(843\) 0 0
\(844\) 27.7128 0.953914
\(845\) 3.46410 0.119169
\(846\) 0 0
\(847\) 0 0
\(848\) 10.3923 0.356873
\(849\) 0 0
\(850\) 42.0000 1.44059
\(851\) −6.92820 −0.237496
\(852\) 0 0
\(853\) −17.3205 −0.593043 −0.296521 0.955026i \(-0.595827\pi\)
−0.296521 + 0.955026i \(0.595827\pi\)
\(854\) 12.0000 0.410632
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 32.0000 1.09183 0.545913 0.837842i \(-0.316183\pi\)
0.545913 + 0.837842i \(0.316183\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) −31.1769 −1.06127 −0.530637 0.847599i \(-0.678047\pi\)
−0.530637 + 0.847599i \(0.678047\pi\)
\(864\) 0 0
\(865\) −20.7846 −0.706698
\(866\) −14.0000 −0.475739
\(867\) 0 0
\(868\) −27.7128 −0.940634
\(869\) 0 0
\(870\) 0 0
\(871\) 13.8564 0.469506
\(872\) 10.3923 0.351928
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) −24.0000 −0.811348
\(876\) 0 0
\(877\) −24.2487 −0.818821 −0.409410 0.912350i \(-0.634266\pi\)
−0.409410 + 0.912350i \(0.634266\pi\)
\(878\) 31.1769 1.05217
\(879\) 0 0
\(880\) 0 0
\(881\) 55.4256 1.86734 0.933668 0.358139i \(-0.116589\pi\)
0.933668 + 0.358139i \(0.116589\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) −20.7846 −0.699062
\(885\) 0 0
\(886\) 34.6410 1.16379
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) 36.0000 1.20740
\(890\) −48.0000 −1.60896
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) −72.0000 −2.40939
\(894\) 0 0
\(895\) 24.0000 0.802232
\(896\) −3.46410 −0.115728
\(897\) 0 0
\(898\) −6.92820 −0.231197
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) −62.3538 −2.07731
\(902\) 0 0
\(903\) 0 0
\(904\) 13.8564 0.460857
\(905\) −6.92820 −0.230301
\(906\) 0 0
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) −24.0000 −0.796468
\(909\) 0 0
\(910\) 41.5692 1.37801
\(911\) −10.3923 −0.344312 −0.172156 0.985070i \(-0.555073\pi\)
−0.172156 + 0.985070i \(0.555073\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 20.7846 0.687494
\(915\) 0 0
\(916\) 10.0000 0.330409
\(917\) −41.5692 −1.37274
\(918\) 0 0
\(919\) −51.9615 −1.71405 −0.857026 0.515273i \(-0.827691\pi\)
−0.857026 + 0.515273i \(0.827691\pi\)
\(920\) 12.0000 0.395628
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) −14.0000 −0.460317
\(926\) −32.0000 −1.05159
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) −20.7846 −0.681921 −0.340960 0.940078i \(-0.610752\pi\)
−0.340960 + 0.940078i \(0.610752\pi\)
\(930\) 0 0
\(931\) −34.6410 −1.13531
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) 13.8564 0.453395
\(935\) 0 0
\(936\) 0 0
\(937\) −13.8564 −0.452669 −0.226335 0.974050i \(-0.572674\pi\)
−0.226335 + 0.974050i \(0.572674\pi\)
\(938\) −13.8564 −0.452428
\(939\) 0 0
\(940\) −36.0000 −1.17419
\(941\) 54.0000 1.76035 0.880175 0.474650i \(-0.157425\pi\)
0.880175 + 0.474650i \(0.157425\pi\)
\(942\) 0 0
\(943\) −20.7846 −0.676840
\(944\) 6.92820 0.225494
\(945\) 0 0
\(946\) 0 0
\(947\) 13.8564 0.450273 0.225136 0.974327i \(-0.427717\pi\)
0.225136 + 0.974327i \(0.427717\pi\)
\(948\) 0 0
\(949\) −48.0000 −1.55815
\(950\) 48.4974 1.57346
\(951\) 0 0
\(952\) 20.7846 0.673633
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 60.0000 1.94155
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 6.92820 0.223374
\(963\) 0 0
\(964\) 6.92820 0.223142
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) −45.0333 −1.44817 −0.724087 0.689709i \(-0.757739\pi\)
−0.724087 + 0.689709i \(0.757739\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −34.6410 −1.11226
\(971\) −48.4974 −1.55636 −0.778178 0.628044i \(-0.783856\pi\)
−0.778178 + 0.628044i \(0.783856\pi\)
\(972\) 0 0
\(973\) 24.0000 0.769405
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) −3.46410 −0.110883
\(977\) −48.4974 −1.55157 −0.775785 0.630997i \(-0.782646\pi\)
−0.775785 + 0.630997i \(0.782646\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −17.3205 −0.553283
\(981\) 0 0
\(982\) −24.0000 −0.765871
\(983\) −38.1051 −1.21536 −0.607682 0.794180i \(-0.707901\pi\)
−0.607682 + 0.794180i \(0.707901\pi\)
\(984\) 0 0
\(985\) −20.7846 −0.662253
\(986\) 36.0000 1.14647
\(987\) 0 0
\(988\) −24.0000 −0.763542
\(989\) 0 0
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 8.00000 0.254000
\(993\) 0 0
\(994\) −12.0000 −0.380617
\(995\) 27.7128 0.878555
\(996\) 0 0
\(997\) −51.9615 −1.64564 −0.822819 0.568304i \(-0.807600\pi\)
−0.822819 + 0.568304i \(0.807600\pi\)
\(998\) 32.0000 1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2178.2.a.q.1.1 2
3.2 odd 2 2178.2.a.ba.1.2 yes 2
11.10 odd 2 2178.2.a.ba.1.1 yes 2
33.32 even 2 inner 2178.2.a.q.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2178.2.a.q.1.1 2 1.1 even 1 trivial
2178.2.a.q.1.2 yes 2 33.32 even 2 inner
2178.2.a.ba.1.1 yes 2 11.10 odd 2
2178.2.a.ba.1.2 yes 2 3.2 odd 2