Properties

Label 2178.2
Level 2178
Weight 2
Dimension 33917
Nonzero newspaces 16
Sturm bound 522720
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(522720\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2178))\).

Total New Old
Modular forms 133240 33917 99323
Cusp forms 128121 33917 94204
Eisenstein series 5119 0 5119

Trace form

\( 33917 q - q^{2} - 3 q^{3} - q^{4} + 3 q^{6} - 22 q^{7} + 2 q^{8} + 3 q^{9} - 20 q^{10} - 10 q^{11} - 22 q^{13} - 22 q^{14} - q^{16} - 46 q^{17} - 6 q^{18} - 32 q^{19} + 6 q^{21} + 46 q^{23} + 17 q^{24}+ \cdots - 320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2178))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2178.2.a \(\chi_{2178}(1, \cdot)\) 2178.2.a.a 1 1
2178.2.a.b 1
2178.2.a.c 1
2178.2.a.d 1
2178.2.a.e 1
2178.2.a.f 1
2178.2.a.g 1
2178.2.a.h 1
2178.2.a.i 1
2178.2.a.j 1
2178.2.a.k 1
2178.2.a.l 1
2178.2.a.m 1
2178.2.a.n 2
2178.2.a.o 2
2178.2.a.p 2
2178.2.a.q 2
2178.2.a.r 2
2178.2.a.s 2
2178.2.a.t 2
2178.2.a.u 2
2178.2.a.v 2
2178.2.a.w 2
2178.2.a.x 2
2178.2.a.y 2
2178.2.a.z 2
2178.2.a.ba 2
2178.2.a.bb 2
2178.2.a.bc 2
2178.2.b \(\chi_{2178}(2177, \cdot)\) 2178.2.b.a 2 1
2178.2.b.b 2
2178.2.b.c 2
2178.2.b.d 2
2178.2.b.e 2
2178.2.b.f 2
2178.2.b.g 4
2178.2.b.h 4
2178.2.b.i 8
2178.2.b.j 8
2178.2.e \(\chi_{2178}(727, \cdot)\) n/a 218 2
2178.2.f \(\chi_{2178}(487, \cdot)\) n/a 180 4
2178.2.i \(\chi_{2178}(725, \cdot)\) n/a 216 2
2178.2.l \(\chi_{2178}(161, \cdot)\) n/a 144 4
2178.2.m \(\chi_{2178}(199, \cdot)\) n/a 550 10
2178.2.n \(\chi_{2178}(493, \cdot)\) n/a 864 8
2178.2.q \(\chi_{2178}(197, \cdot)\) n/a 440 10
2178.2.r \(\chi_{2178}(239, \cdot)\) n/a 864 8
2178.2.u \(\chi_{2178}(67, \cdot)\) n/a 2640 20
2178.2.v \(\chi_{2178}(37, \cdot)\) n/a 2200 40
2178.2.w \(\chi_{2178}(65, \cdot)\) n/a 2640 20
2178.2.z \(\chi_{2178}(17, \cdot)\) n/a 1760 40
2178.2.bc \(\chi_{2178}(25, \cdot)\) n/a 10560 80
2178.2.bf \(\chi_{2178}(29, \cdot)\) n/a 10560 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2178))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2178)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(198))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(363))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(726))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1089))\)\(^{\oplus 2}\)