Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 43 x^{2} )^{2}$ |
| $1 + 86 x^{2} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.5$ |
| Angle rank: | $0$ (numerical) |
| Jacobians: | $27$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1936$ | $3748096$ | $6321522064$ | $11662935330816$ | $21611482607301136$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $2022$ | $79508$ | $3411406$ | $147008444$ | $6321681078$ | $271818611108$ | $11688186602398$ | $502592611936844$ | $21611482901318022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 27 curves (of which all are hyperelliptic):
- $y^2=11 x^6+20 x^5+31 x^4+7 x^2+35 x+39$
- $y^2=5 x^6+4 x^5+25 x^4+13 x^3+27 x^2+9 x+10$
- $y^2=37 x^5+10 x^4+23 x^3+8 x^2+34 x$
- $y^2=36 x^6+11 x^5+30 x+26$
- $y^2=23 x^6+9 x^5+27 x^4+14 x^3+37 x^2+29 x+31$
- $y^2=7 x^6+8 x^5+38 x^4+4 x^3+25 x^2+28 x+28$
- $y^2=21 x^6+24 x^5+28 x^4+12 x^3+32 x^2+41 x+41$
- $y^2=23 x^6+38 x^5+20 x^4+21 x^3+20 x^2+38 x+23$
- $y^2=26 x^6+28 x^5+17 x^4+20 x^3+17 x^2+28 x+26$
- $y^2=28 x^6+2 x^5+22 x^4+29 x^3+6 x^2+29 x+13$
- $y^2=41 x^6+6 x^5+23 x^4+x^3+18 x^2+x+39$
- $y^2=38 x^6+5 x^5+22 x^4+42 x^3+37 x^2+32 x+30$
- $y^2=28 x^6+15 x^5+23 x^4+40 x^3+25 x^2+10 x+4$
- $y^2=35 x^5+10 x^4+33 x^3+32 x^2+23 x$
- $y^2=x^6+23 x^5+22 x^4+18 x^3+17 x^2+14 x+2$
- $y^2=42 x^6+25 x^5+2 x^3+8 x^2+25 x+42$
- $y^2=40 x^6+32 x^5+6 x^3+24 x^2+32 x+40$
- $y^2=20 x^6+33 x^5+19 x^4+39 x^3+x^2+19 x+11$
- $y^2=17 x^6+13 x^5+14 x^4+31 x^3+3 x^2+14 x+33$
- $y^2=41 x^6+26 x^5+27 x^4+39 x^3+6 x^2+29 x+19$
- $y^2=37 x^6+35 x^5+38 x^4+31 x^3+18 x^2+x+14$
- $y^2=33 x^6+15 x^4+15 x^2+33$
- $y^2=13 x^6+2 x^4+2 x^2+13$
- $y^2=33 x^6+2 x^4+6 x^2+31$
- $y^2=12 x^6+16 x^4+5 x^2+23$
- $y^2=39 x^6+20 x^5+x^4+6 x^3+33 x^2+20 x+1$
- $y^2=31 x^6+17 x^5+3 x^4+18 x^3+13 x^2+17 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$ |
| The base change of $A$ to $\F_{43^{2}}$ is 1.1849.di 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $43$ and $\infty$. |
Base change
This is a primitive isogeny class.