L(s) = 1 | + 16·17-s + 6·25-s − 16·41-s − 14·49-s + 12·73-s + 32·89-s − 36·97-s + 32·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 3.88·17-s + 6/5·25-s − 2.49·41-s − 2·49-s + 1.40·73-s + 3.39·89-s − 3.65·97-s + 3.01·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.871188571\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.871188571\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.372732192062624224981148085357, −8.612772853079119873302234581371, −8.142751074316513789502919252186, −7.909987862286350183375095910259, −7.33244289349889698794346569795, −6.81411763071537323600840753231, −6.25541731904712913819044308910, −5.66990658847027277525585177583, −5.02525715711667990043884728260, −5.01237677697104957198001932438, −3.81076717999348126429094994331, −3.29164018328411348390302871759, −3.02473421793484999957631922902, −1.74502909344688296171382532979, −1.00089337770198902241003598585,
1.00089337770198902241003598585, 1.74502909344688296171382532979, 3.02473421793484999957631922902, 3.29164018328411348390302871759, 3.81076717999348126429094994331, 5.01237677697104957198001932438, 5.02525715711667990043884728260, 5.66990658847027277525585177583, 6.25541731904712913819044308910, 6.81411763071537323600840753231, 7.33244289349889698794346569795, 7.909987862286350183375095910259, 8.142751074316513789502919252186, 8.612772853079119873302234581371, 9.372732192062624224981148085357