Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$4624$ |
$29593600$ |
$152190493456$ |
$806378250240000$ |
$4297257639344252944$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$62$ |
$5550$ |
$391214$ |
$28395358$ |
$2072893982$ |
$151333371150$ |
$11047406353934$ |
$806460201328318$ |
$58871586792930302$ |
$4297625822222832750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=13 x^6+60 x^5+66 x^4+17 x^3+66 x^2+60 x+13$
- $y^2=63 x^6+60 x^5+64 x^4+15 x^3+27 x^2+29 x+51$
- $y^2=28 x^6+17 x^5+16 x^4+54 x^3+69 x^2+33 x+68$
- $y^2=66 x^6+65 x^5+5 x^4+29 x^3+5 x^2+65 x+66$
- $y^2=8 x^6+17 x^5+4 x^4+53 x^3+6 x^2+20 x+27$
- $y^2=63 x^6+7 x^5+4 x^4+61 x^3+32 x^2+10 x+63$
- $y^2=9 x^6+19 x^5+18 x^4+28 x^3+30 x^2+41 x+31$
- $y^2=33 x^6+4 x^5+10 x^4+50 x^3+35 x^2+8 x+7$
- $y^2=27 x^6+49 x^5+23 x^4+59 x^3+52 x^2+54 x+46$
- $y^2=22 x^6+36 x^5+49 x^4+69 x^3+47 x^2+57 x+69$
- $y^2=62 x^6+55 x^5+42 x^4+55 x^3+42 x^2+55 x+62$
- $y^2=24 x^6+25 x^5+25 x^4+60 x^3+25 x^2+25 x+24$
- $y^2=69 x^6+68 x^5+66 x^4+58 x^3+19 x^2+49 x+10$
- $y^2=37 x^6+72 x^5+57 x^4+10 x^3+31 x^2+54 x+35$
- $y^2=23 x^6+64 x^5+15 x^4+46 x^3+14 x^2+39 x+18$
- $y^2=38 x^6+67 x^5+11 x^4+2 x^3+11 x^2+67 x+38$
- $y^2=35 x^6+68 x^5+72 x^4+71 x^3+49 x^2+59 x+64$
- $y^2=55 x^6+63 x^5+10 x^4+52 x^3+72 x^2+65 x+57$
- $y^2=36 x^6+47 x^5+29 x^4+11 x^3+68 x^2+13 x+14$
- $y^2=43 x^6+x^5+56 x^4+24 x^3+56 x^2+x+43$
- and 60 more
- $y^2=67 x^6+38 x^5+58 x^4+36 x^3+34 x^2+70 x+2$
- $y^2=11 x^6+10 x^5+70 x^4+26 x^3+17 x^2+2 x+29$
- $y^2=32 x^6+51 x^5+23 x^4+2 x^3+18 x^2+42 x+35$
- $y^2=40 x^6+47 x^5+23 x^4+67 x^3+23 x^2+47 x+40$
- $y^2=44 x^6+48 x^5+25 x^4+14 x^3+67 x^2+19 x+44$
- $y^2=47 x^6+26 x^5+13 x^4+32 x^3+13 x^2+26 x+47$
- $y^2=4 x^6+2 x^5+72 x^4+16 x^3+25 x^2+9 x+61$
- $y^2=70 x^6+6 x^5+18 x^4+62 x^3+35 x^2+70 x+9$
- $y^2=28 x^6+x^5+37 x^4+43 x^3+68 x^2+13 x+18$
- $y^2=29 x^6+46 x^5+48 x^4+19 x^3+48 x^2+46 x+29$
- $y^2=22 x^6+50 x^5+13 x^4+4 x^3+21 x^2+26 x+24$
- $y^2=17 x^6+34 x^5+46 x^4+20 x^3+46 x^2+34 x+17$
- $y^2=42 x^6+48 x^5+62 x^4+58 x^3+14 x^2+50 x+14$
- $y^2=17 x^6+63 x^5+55 x^4+63 x^3+9 x^2+34 x+7$
- $y^2=36 x^6+6 x^4+6 x^2+36$
- $y^2=55 x^6+25 x^4+25 x^2+55$
- $y^2=34 x^6+41 x^5+49 x^4+4 x^3+64 x^2+32 x+42$
- $y^2=14 x^6+48 x^5+46 x^4+62 x^3+35 x^2+38 x+53$
- $y^2=66 x^6+5 x^5+68 x^4+31 x^3+58 x^2+25 x+15$
- $y^2=25 x^6+33 x^5+45 x^4+24 x^3+45 x^2+33 x+25$
- $y^2=50 x^6+40 x^5+7 x^4+24 x^3+7 x^2+40 x+50$
- $y^2=17 x^6+40 x^5+71 x^4+53 x^3+49 x^2+66 x+30$
- $y^2=26 x^6+68 x^5+62 x^4+19 x^3+56 x^2+7 x+27$
- $y^2=22 x^6+4 x^5+22 x^4+26 x^3+66 x^2+36 x+10$
- $y^2=13 x^6+25 x^5+26 x^4+20 x^3+45 x^2+48 x+14$
- $y^2=44 x^6+14 x^5+51 x^4+42 x^3+3 x^2+8$
- $y^2=45 x^6+32 x^5+31 x^4+18 x^3+66 x^2+9 x+58$
- $y^2=16 x^6+55 x^5+24 x^4+2 x^3+67 x^2+48 x+8$
- $y^2=2 x^6+46 x^5+36 x^4+20 x^3+61 x^2+70 x+54$
- $y^2=65 x^6+29 x^5+19 x^4+33 x^3+41 x^2+22 x+24$
- $y^2=44 x^6+8 x^5+60 x^4+42 x^3+60 x^2+8 x+44$
- $y^2=22 x^6+49 x^5+4 x^4+40 x^3+7 x^2+62 x+64$
- $y^2=33 x^6+35 x^5+14 x^4+27 x^3+9 x^2+59 x+62$
- $y^2=14 x^6+31 x^5+7 x^4+20 x^3+45 x^2+12 x+26$
- $y^2=61 x^6+47 x^5+8 x^4+20 x^3+27 x^2+48 x+37$
- $y^2=38 x^6+28 x^5+22 x^4+39 x^3+x^2+4 x+47$
- $y^2=25 x^6+68 x^5+24 x^4+13 x^3+51 x^2+2 x+21$
- $y^2=38 x^6+37 x^4+37 x^2+38$
- $y^2=53 x^6+59 x^5+39 x^4+30 x^3+39 x^2+59 x+53$
- $y^2=31 x^6+4 x^5+14 x^4+72 x^3+15 x^2+18 x+53$
- $y^2=47 x^6+7 x^5+70 x^4+48 x^3+56 x^2+19 x+1$
- $y^2=35 x^6+14 x^5+69 x^4+11 x^3+69 x^2+14 x+35$
- $y^2=33 x^6+21 x^4+21 x^2+33$
- $y^2=46 x^6+20 x^5+33 x^4+57 x^3+34 x^2+44 x+63$
- $y^2=15 x^6+38 x^4+38 x^2+15$
- $y^2=50 x^5+52 x^4+14 x^3+52 x^2+50 x$
- $y^2=39 x^6+58 x^5+25 x^4+53 x^3+25 x^2+58 x+39$
- $y^2=26 x^5+21 x^4+63 x^3+10 x^2+15 x$
- $y^2=29 x^6+55 x^5+54 x^4+65 x^3+57 x^2+64 x+54$
- $y^2=63 x^6+39 x^5+52 x^4+26 x^3+15 x^2+5 x+56$
- $y^2=14 x^6+4 x^5+10 x^4+3 x^3+5 x^2+x+20$
- $y^2=7 x^6+43 x^5+5 x^4+20 x^3+31 x^2+11 x$
- $y^2=58 x^6+47 x^5+50 x^4+33 x^3+19 x^2+7 x+54$
- $y^2=67 x^6+59 x^5+42 x^4+5 x^3+42 x^2+59 x+67$
- $y^2=35 x^6+52 x^4+52 x^2+35$
- $y^2=31 x^6+72 x^4+72 x^2+31$
- $y^2=21 x^6+9 x^5+20 x^4+25 x^3+17 x^2+5 x+2$
- $y^2=71 x^6+44 x^5+63 x^4+55 x^3+63 x^2+44 x+71$
- $y^2=32 x^6+50 x^5+24 x^4+48 x^3+9 x^2+22 x+52$
- $y^2=62 x^6+49 x^5+2 x^4+72 x^3+15 x^2+67 x+69$
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$
Base change
This is a primitive isogeny class.
Twists