Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 29 x^{2} )( 1 + 4 x + 29 x^{2} )$ |
$1 + 42 x^{2} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.378881058409$, $\pm0.621118941591$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $78$ |
Isomorphism classes: | 220 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $884$ | $781456$ | $594791444$ | $500131840000$ | $420707200980404$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $926$ | $24390$ | $707118$ | $20511150$ | $594759566$ | $17249876310$ | $500249228638$ | $14507145975870$ | $420707168660606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=14 x^6+24 x^5+14 x^4+18 x^3+14 x^2+24 x+14$
- $y^2=28 x^6+19 x^5+28 x^4+7 x^3+28 x^2+19 x+28$
- $y^2=13 x^6+25 x^5+6 x^4+17 x^3+3 x^2+22 x+21$
- $y^2=26 x^6+21 x^5+12 x^4+5 x^3+6 x^2+15 x+13$
- $y^2=15 x^6+11 x^5+27 x^4+23 x^3+27 x^2+19 x+23$
- $y^2=x^6+22 x^5+25 x^4+17 x^3+25 x^2+9 x+17$
- $y^2=25 x^6+11 x^5+x^4+5 x^3+27 x^2+4 x+20$
- $y^2=3 x^6+22 x^5+22 x^4+5 x^3+21 x^2+24 x+6$
- $y^2=26 x^6+25 x^5+10 x^4+8 x^3+23 x^2+15 x+6$
- $y^2=23 x^6+21 x^5+20 x^4+16 x^3+17 x^2+x+12$
- $y^2=2 x^6+21 x^5+2 x^4+8 x^3+25 x^2+23 x+11$
- $y^2=4 x^6+13 x^5+4 x^4+16 x^3+21 x^2+17 x+22$
- $y^2=24 x^6+8 x^4+16 x^2+18$
- $y^2=7 x^6+4 x^4+8 x^2+27$
- $y^2=8 x^6+10 x^5+6 x^4+2 x^3+5 x^2+15 x+17$
- $y^2=16 x^6+20 x^5+12 x^4+4 x^3+10 x^2+x+5$
- $y^2=20 x^6+x^5+17 x^4+24 x^3+17 x^2+x+20$
- $y^2=11 x^6+2 x^5+5 x^4+19 x^3+5 x^2+2 x+11$
- $y^2=21 x^6+16 x^5+20 x^4+11 x^2+10 x+19$
- $y^2=13 x^6+3 x^5+11 x^4+22 x^2+20 x+9$
- and 58 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.ae $\times$ 1.29.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{29^{2}}$ is 1.841.bq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.