Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 17 x^{2} )^{2}$ |
$1 - 16 x + 98 x^{2} - 272 x^{3} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.0779791303774$, $\pm0.0779791303774$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $0$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $100$ | $67600$ | $23136100$ | $6922240000$ | $2013702902500$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $2$ | $230$ | $4706$ | $82878$ | $1418242$ | $24135590$ | $410350306$ | $6975884158$ | $118588692482$ | $2015998274150$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.