Properties

Label 2-7220-1.1-c1-0-104
Degree $2$
Conductor $7220$
Sign $-1$
Analytic cond. $57.6519$
Root an. cond. $7.59289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 2·7-s + 9-s − 2·13-s − 2·15-s − 6·17-s + 4·21-s + 6·23-s + 25-s − 4·27-s − 6·29-s + 4·31-s − 2·35-s − 2·37-s − 4·39-s − 6·41-s − 10·43-s − 45-s − 6·47-s − 3·49-s − 12·51-s + 6·53-s − 12·59-s + 2·61-s + 2·63-s + 2·65-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.554·13-s − 0.516·15-s − 1.45·17-s + 0.872·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s + 0.718·31-s − 0.338·35-s − 0.328·37-s − 0.640·39-s − 0.937·41-s − 1.52·43-s − 0.149·45-s − 0.875·47-s − 3/7·49-s − 1.68·51-s + 0.824·53-s − 1.56·59-s + 0.256·61-s + 0.251·63-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7220\)    =    \(2^{2} \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(57.6519\)
Root analytic conductor: \(7.59289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7220} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7220,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70342498742006188501994585256, −7.06215723111114144957068885167, −6.39347529836665585887623697697, −5.14081916011398824138614106106, −4.74913960233451073492131590460, −3.82183399469630822167941819328, −3.12234796120650330097153328391, −2.31822883421800731675688556606, −1.57301709011122909909496546092, 0, 1.57301709011122909909496546092, 2.31822883421800731675688556606, 3.12234796120650330097153328391, 3.82183399469630822167941819328, 4.74913960233451073492131590460, 5.14081916011398824138614106106, 6.39347529836665585887623697697, 7.06215723111114144957068885167, 7.70342498742006188501994585256

Graph of the $Z$-function along the critical line